We can't just update the state of the connector and CRTC from KMS since
it might contain too new updates, e.g. from a from a future hot plug. In
order to not add ad-hoc hot plug detection everywhere, predict the state
changes by looking inside the MetaKmsUpdate object, and let the hot-plug
state changes happen after the actual hot-plug event.
This fixes issues where connectors were discovered as disconnected while
doing a mode-set, meaning assumptions about the connectedness of
monitors elsewhere were broken until the hot plug event was processed.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/782https://gitlab.gnome.org/GNOME/mutter/merge_requests/826
It was not the lack of forcing the shadow fb that caused slowness, but
rather due to the method the shadow fb content was copied onto the
scanout fb. With 'clutter: Use cogl_blit_framebuffer() for shadow FB'
we'll use a path that shouldn't be slow when copying onto the scanout
fb.
Also 437f6b3d59 accidentally enabled
shadow fb when using hw accelerated contexts, due to the cap being set
to 1 in majority of drivers. While the kernel documentation for the
related field says "hint to userspace to prefer shadow-fb rendering",
the name of the hint when exposed to userspace is
DRM_CAP_DUMB_PREFER_SHADOW, thus should only be taken into consideration
for dumb buffers, not rendering in general.
This reverts commit 437f6b3d59.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/818
The commit 'renderer/native: Use shadow fb on software GL if preferred'
attempted to force using a shadow fb when using llvmpipe in order to
speed up blending, but instead only did so when llvmpipe AND the drm
device explicityl asked for it.
Now instead always force it for llvmpipe and other software rendering
backends, and otherwise just query the drm device (i.e.
DRM_CAP_DUMB_PREFER_SHADOW).
https://gitlab.gnome.org/GNOME/mutter/merge_requests/807
When suspending, the devices are removed and the virtual device
associated with the corresponding core pointer is disposed.
Add the pointer accessibility virtual device to the core pointer
on resume to restore pointer accessibility on resume if enabled.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/761
Threaded swap wait was added for using together with the Nvidia GLX
driver due to the lack of anything equivalent to the INTEL_swap_event
GLX extension. The purpose was to avoid inhibiting the invocation of
idle callbacks when constantly rendering, as the combination of
throttling on swap-interval 1 and glxSwapBuffers() and the frame clock
source having higher priority than the default idle callback sources
meant they would never be invoked.
This was solved in gbz#779039 by introducing a thread that took care of
the vsync waiting, pushing frame completion events to the main thread
meaning the main thread could go idle while waiting to draw the next
frame instead of blocking on glxSwapBuffers().
As of https://gitlab.gnome.org/GNOME/mutter/merge_requests/363, the
main thread will instead use prediction to estimate when the next frame
should be drawn. A side effect of this is that even without
INTEL_swap_event, we would not block as much, or at all, on
glxSwapBuffers(), as at the time it is called, we have likely already
hit the vblank, or will hit it soon.
After having introduced the swap waiting thread, it was observed that
the Nvidia driver used a considerable amount of CPU waiting for the
vblank, effectively wasting CPU time. The need to call glFinish() was
also problematic as it would wait for the frame to finish, before
continuing. Due to this, remove the threaded swap wait, and rely only on
the frame clock not scheduling frames too early.
Fixes: https://bugzilla.gnome.org/show_bug.cgi?id=781835
Related: https://gitlab.gnome.org/GNOME/mutter/issues/700
[jadahl: Rewrote commit message]
https://gitlab.gnome.org/GNOME/mutter/merge_requests/602
We are really more interested in when a window is damaged, rather than
when it's painted, for screen casting windows. This also has the benefit
of not listening on the "paint" signal of the actor, meaning it'll open
doors for hacks currently necessary for taking a screenshot of a window
consisting of multiple surfaces.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/752
The end goal is to have all clutter backend code in src/backends. Input
is the larger chunk of it, which is now part of our specific
MutterClutterBackendNative, this extends to device manager, input devices,
tools and keymap.
This was supposed to be nice and incremental, but there's no sane way
to cut this through. As a result of the refactor, a number of private
Clutter functions are now exported for external backends to be possible.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/672
The end goal is to have all clutter backend code in src/backends. Input
is the larger chunk of it, which is now part of our specific
MutterClutterBackendX11, this extends to device manager, input devices,
tools and keymap.
This was supposed to be nice and incremental, but there's no sane way
to cut this through. As a result of the refactor, a number of private
Clutter functions are now exported for external backends to be possible.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/672
Introduce MetaCompositorX11, dealing with being a X11 compositor, and
MetaCompositorServer, being a compositor while also being the display
server itself, e.g. a Wayland display server.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/727
Add meta-kms and meta-monitor-manager-kms listener for the udev
device-removed signal and on this signal update the device state /
re-enumerate the monitors, so that the monitors properly get updated
to disconnected state on GPU removal.
We really should also have meta-backend-native remove the GPU itself
from our list of GPU objects. But that is more involved, see:
https://gitlab.gnome.org/GNOME/mutter/issues/710
This commit at least gets us to a point where we properly update the
list of monitors when a GPU gets unplugged; and where we no longer
crash the first time the user changes the monitor configuration after
a GPU was unplugged.
Specifically before this commit we would hit the first g_error () in
meta_renderer_native_create_view () as soon as some monitor
(re)configuration is done after a GPU was unplugged.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
drmModeGetConnector may fail and return NULL, this may happen when
a connector is removed underneath us (which can happen with e.g.
DP MST or GPU hot unplug).
Deal with this by skipping the connector when enumerating and by
assuming it is disconnected when checking its connection state.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
drmModeGetCrtc may fail and return NULL. This will trigger when
meta_kms_crtc_update_state gets called from meta_kms_update_states_sync
after a GPU has been unplugged leading to a NULL pointer deref causing
a crash.
This commit fixes this by checking for NULL and clearing the current_state
when NULL is returned.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
Before this commit meta_kms_crtc_read_state was overwriting the
entire MetaKmsCrtcState struct stored in crtc->current_state including
the gamma (sub)struct.
This effectively zero-s the gamma struct each time before calling
read_gamma_state, setting the pointers where the previous gamma values
were stored to NULL without freeing the memory. Luckily this zero-ing
also sets gamma.size to 0, causing read_gamma_state to re-alloc the
arrays on each meta_kms_crtc_update_state call. But this does mean that
were leaking the old gamma arrays on each meta_kms_crtc_update_state call.
This commit fixes this by making meta_kms_crtc_read_state only overwrite
the other values in the MetaKmsCrtcState struct and leaving the gamma
sub-struct alone, this will make read_gamma_state correctly re-use the
gamma tables if the gamma table size is unchanged; or re-alloc them
(freeing the old ones) if the size has changed, fixing the memory leak.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
The "device-added" signal should use g_cclosure_marshal_VOID__OBJECT not
g_cclosure_marshal_VOID__VOID.
Instead of fixing this manually, simply replace the closure function for
both signals with NULL, glib will then automatically set the correct
va_marshaller.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
Explicitly checking the dimensions of a mode to determine whether it
should be advertised or not fails for portrait style modes. Avoid this
by checking the area instead.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/722
Similar to gtk commit f507a790, this ensures that the valist variant of
the marshaller is used. From that commit's message:
```
If we set c_marshaller manually, then g_signal_newv() will not setup a
va_marshaller for us. However, if we provide c_marshaller as NULL, it will
setup both the c_marshaller (to g_cclosure_marshal_VOID__VOID) and
va_marshaller (to g_cclosure_marshal_VOID__VOIDv) for us.
```
https://gitlab.gnome.org/GNOME/mutter/merge_requests/697
By putting `NULL` as the C marshaller in `g_signal_new`, you
automatically get `g_cclosure_marshaller_generic`, which will try to
process its arguments and return value with the help of libffi and
GValue.
Using `glib-genmarshal` and valist_marshallers, we can prevent this so
that we need less instructions for each signal emission.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/697