We overrode the property for PowerSaveMode, which meant that gdbus's
auto-generated PropertiesChanged code wasn't being run.
This really confused gnome-rr and gnome-settings-daemon's power plugin
about the current DPMS state of the display, since they used their
cached PowerSaveMode properties, and never saw a PropertiesChanged being
emitted.
If a display was on, they set it to off, and then set it back on, the
setting back on would never fire, since they thought the display was
already off.
To fix this, remove our custom property override and just respond to
notifications on the object.
Namely, this fixes the DPMS management when receiving notifications so
that it now properly times out.
Use the new DRM capabilities to figure out the correct cursor size, and
make sure that matches instead of hardcoding 64x64. This fixes incorrect
rendering on some newer AMD cards that support 256x256 cursors.
Based heavily on a patch by:
Alvaro Fernando García <alvarofernandogarcia@gmail.com>
We'll need this in the wayland frontend to send a modifiers event to
clients.
Note that on X11 this isn't needed because key events include the
group index encoded in modifier state. If we ever want to make the
wayland frontend work with the X11 backend we'll handle it then.
https://bugzilla.gnome.org/show_bug.cgi?id=736433
Setting the scaling factor immediately after calling clutter_init()
avoids creating the stage at one size, then later resizing it to
a different size.
https://bugzilla.gnome.org/show_bug.cgi?id=736279
In the case of a nested Wayland compositor inside an X session,
Clutter is managing the toplevel window size, so don't call
XResizeWindow on it - this will confuse Clutter and get the size
and the hints out of sync on the toplevel window.
https://bugzilla.gnome.org/show_bug.cgi?id=736279
If we add device 2, then add device 254, then remove device 254, then
the max device ID will be 253. Scan through all the devices again on
removal to calculate a new max device ID.
Rather than have the DBus code control this, move this into
MetaBackend. This also lets us destroy idle monitors when appropriate,
rather than leaking them forever.
We indeed call this function if we're not an X11 compositor, but in this
case we're simply calling it to say that we have no cursor overlay. Make
sure not to assert fail in this case.
RandR's QueryOutputProperty request makes the incredible decision of
throwing a BadName if you pass a property that doesn't exist, which
means that trying to check if a property exists is a royal pain when
using Xlib.
XCB's interface is much more friendly about errors and not having global
state and things like that, so use that instead to query our backlight
property.
If the property doesn't exist, a BadName error will be generated. This
is a terrible API, but it's what we're stuck with. Use
RRGetOutputProperty instead.
We've long used a switch statement on the grab operation to determine
where events should go. The issue with MetaGrabOp is that it's a mixture
of a few different things, including event routing, state management,
and the behavior to choose during operations.
This leads to poorly defined event routing and hard-to-follow logic,
since it's sometimes unclear what should point where, and our utility
methods for determining grab operations apart can be poorly named.
To fix this, establish the concept of a "event route", which describes
where events should be routed to.
Popups could not set the cursor image, because the cursor tracker would
ignore window cursors if we had a popup active. The correct condition to
check for is already in should_block_wayland. Rename this to the more
sensible name windows_are_interactable, and use it in the cursor tracker.
meta_backend_get_keymap is supposed to return a static keymap, not a new
one every time. Cache it internally. We don't update it when the keymap
changes on the server, but we'll do this soon.
This allows creating the stage much earlier than it otherwise would have
been. Our initialization sequence has always been a bit haphazard, with
first the MetaBackend created, then the MetaDisplay, and inside of that,
the MetaScreen and MetaCompositor.
Refactor this out so that the MetaBackend creates the Clutter
stage. Besides the clarity of early initialization, we now have much
easier access to the stage, allowing us to use it for things such as
key focus and beyond.
These methods allow us to set and get xkbcommon keymaps as well as
locking a specific layout in a layout group.
With this, we introduce dependencies on xkeyboard-config, xkbfile,
xkbcommon-x11 and a libX11 new enough to have xcb support.
https://bugzilla.gnome.org/show_bug.cgi?id=734301
Sometimes we can get a host event without having the display up and
running yet. Just don't pass it to the compositor in that case, since it
won't be possible for it to have any event that matters.
This reverts commit 3b85e4b2b9.
This breaks touch support; reverting would break wayland
(is what this patch tried to fix; we should find a better solution
that works on both).
When a touch sequence is passively grabbed and later rejected, events
will be replayed on the next client in propagation order, although those
events (either transformed to pointer events or not) will contain the
original timestamps, this will make grabs fail with InvalidTime if triggered
from the replayed ButtonPress/TouchBegin handler.
In order to work around this, store the most recent event time (presumably
gotten from the XI_TouchEnd caused by the passive grab being rejected), and
use that time on the events being replayed afterwards and grabs, so we don't
possibly fail with InvalidTime if those events result in a compositor grab.
The output_id is more of an opaque identifier for the monitor, based on
its underlying ID from the windowing system. Since we also use the term
"output_id" for the output's index, rename our use of the opaque cookie
"output_id" to "winsys_id".