Without GLSL, we didn't apply the vignetting, which not only made the
background uniform in color, it made it much lighter. Adjust for this
and make the average brightness with the vignette effect the same
with or without GLSL.
https://bugzilla.gnome.org/show_bug.cgi?id=735637
The old requirement that multiple MetaBackgroundActor objects be
layered on top of each to produce blended backgrounds resulted in
extremely inefficient drawing since the entire framebuffer had
to be read and written multiple times.
* Replace the MetaBackground ClutterContent with a plain GObject
that serves to hold the background parameters and prerender
textures to be used to draw the background. It handles
colors, gradients, and blended images, but does not handle
vignetting
* Add vignetting to MetaBackgroundActor directly.
* Add MetaBackgroundImage and MetaBackgroundImageCache to allow
multiple MetaBackground objects to share the same images
By removing the usage of ClutterContent, the following optimizations
were easy to add:
Blending is turned off when the actor is fully opaque
Nearest-neighbour filtering is used when drawing 1:1
The GLSL vignette code is slightly improved to use a vertex shader
snippet for computing the texture coordinate => position in actor
mapping.
https://bugzilla.gnome.org/show_bug.cgi?id=735637
The old check for using NEAREST by checking clutter_actor_is_in_clone_paint()
and meta_actor_is_untransformed (actor) doesn't work properly since
clutter_actor_is_in_clone_paint() does not look at ancestors of the
actor; it only applies to a direct clone of the actor. Using
meta_actor_painting_untransformed() allows us to check exactly what we
care about rather than using tricky approximations.
https://bugzilla.gnome.org/show_bug.cgi?id=735632
The painting_untransformed() function in MetaWindowGroup is useful
elsewhere, in particular if we want to check whether we can avoid
bilinear filtering when painting a texture 1:1.
https://bugzilla.gnome.org/show_bug.cgi?id=735632
meta_surface_actor_is_argb32 assumes that lack of stex means that a window is
ARGB32. When we unredirect a window we detach the texture so we end up without
a texture. Given that should_unredirect returns FALSE when a window is argb32,
we know that this window is indeed not ARGB32.
Returing TRUE in that case causes us to flip between redirected and
unredirected on every paint.
So fix that by returning FALSE in that case.
When the blended region was empty, meaning we didn't have to paint
anything blended -- the case for an app update -- was drawing the
entire window blended, because of a think-o in the complex and
complicated logic.
Fix this so that we don't draw anything for the blended region when
empty.
region first
If we're going to render the entire texture blended, then don't bother
painting the unblended stuff, since we're just going to draw on top
anyway.
This makes it so that MetaSurfaceActorWayland is effectively just a
wrapper actor around MetaShapedTexture with some extra scaling. I think
the MetaSurfaceActor subclassing was a bad idea -- we really should have
these abstractions in much higher levels in the stack than the
compositor.
It doesn't make sense to update it in the surface actor. It's also
theoretically wrong to update the buffer's texture on surface commit,
too, because it's buffer state, not surface state, but I don't think
there's any place we use a wl_buffer without a wl_surface.
We've long used a switch statement on the grab operation to determine
where events should go. The issue with MetaGrabOp is that it's a mixture
of a few different things, including event routing, state management,
and the behavior to choose during operations.
This leads to poorly defined event routing and hard-to-follow logic,
since it's sometimes unclear what should point where, and our utility
methods for determining grab operations apart can be poorly named.
To fix this, establish the concept of a "event route", which describes
where events should be routed to.
This allows creating the stage much earlier than it otherwise would have
been. Our initialization sequence has always been a bit haphazard, with
first the MetaBackend created, then the MetaDisplay, and inside of that,
the MetaScreen and MetaCompositor.
Refactor this out so that the MetaBackend creates the Clutter
stage. Besides the clarity of early initialization, we now have much
easier access to the stage, allowing us to use it for things such as
key focus and beyond.
If we for some reason have an error trying to allocate the framebuffer,
we'll still mark the tower as revalidated. Move the validation to the
end of the actual revalidation code to solve this.
It's a deprecated API that can surprise us. Namely, when the internal
format passed is COGL_PIXEL_FORMAT_ANY, it will *always* allocate an
RGBA8888 pixel format texture, even if we only passed it a RGB format
or even an A8 format.
cogl_texture_2d_new_with_data is the newer, better API and doesn't have
these warts.
Connecting to size-changed is wrong -- size-changed tells us when
we *told* the X server or resize the window. For X11, we're sort of
guaranteed that the surface will be updated at some point before the
next frame, but for Xwayland, we can't be sure that the new surface is
attached at this point.
This fixes weird artifacts when resizing apps like xclock.
This was wrong for subsurfaces that extend beyond the parent's shape,
since the paint volume would be wrong in this case. Instead of using the
shape region which can be out of date and wrong, just use the union of
our children's volumes, which is a lot easier to manage.
Use connect_after() to accomodate code in GNOME Shell that,
when benchmarking drawing performance, connects to ::after-paint
and calls glFinish(). The timing information from that will be
more accurate if we hold off until that completes before we signal
apps to begin drawing the next frame. If there are no other
connections to ::after-paint, connect() vs. connect_after() doesn't
matter.
https://bugzilla.gnome.org/show_bug.cgi?id=732350