Each level in the tower is initialized by binding the texture for that
level to an offscreen framebuffer and rendering the previous level as a
textured rectangle. The problem was that we were blending the previous
level with undefined data so argb32 windows with transparencies would
result in artefacts. This makes sure to disable blending when drawing
the textured rectangle.
The code here before was completely wrong. Not only did it mix up
coordinate spaces of "client rect" vs. "frame rect", but it used
meta_frame_get_frame_bounds, which is specifically for the *visible*
bounds of a window!
In the case that we don't have a bounding or input shape region at
all on the client window, the input shape that we should apply is
the surface's natural shape. So, set the region to NULL to get the
natural rect picking semantics.
Compositors haven't been able to manage more than one screen for
quite a while. Merge MetaCompScreen into MetaCompositor, and update
the API to match.
We still keep MetaScreen in the public compositor API for compatibility
purposes.
We previously separated out MetaDisplay and MetaScreen. mutter
would only manage one screen, but we still kept a list of screens
for simplicity.
With Wayland support, we no longer care about the ability to
manage more than one screen at a time. Remove this by killing
the list of screens, in favor of having just one MetaScreen
in MetaDisplay.
We also kill off active_screen at the same time, since it's
not necessary anymore.
A future cleanup should merge MetaDisplay and MetaScreen. To avoid
breaking API, we should probably keep MetaScreen around as a dummy
type.
cogl_texture_get_components can be used on both X11 and Wayland
backends. Technically, the detection is different: we actually
check the actual RENDER format in the old code, while Cogl simply
assumes that any pixmap with a depth >= 32 is ARGB32. Since Cogl
already seems to be working with its internal checks, it makes
more sense to use Cogl's check rather than keeping our own.
is_argb32 can be called at any time, including times when we don't
have a texture. In that case, just assume we're ARGB32. The value
really shouldn't be important though.
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
If we have a CLICKING grab op we still need to send events to xwayland
so that we get them back for gtk+ to process thus we can't steer
wayland input focus away from it.
https://bugzilla.gnome.org/show_bug.cgi?id=726123
This ensures that we send the proper leave and enter events to wayland
clients.
Particularly, this solves a bug in SSD xwayland windows where clicking
and dragging on the title bar to move the window only works on the odd
turn (unless the pointer moves away from the title bar between
tries). This happens because xwayland gets a button press but doesn't
see the release so when it gets the next button press it discards it
because its pointer button tracking logic says that the button is
already pressed. Sending the proper wayland pointer leave event fixes
it since wayland clients must forget about button state at that point.
https://bugzilla.gnome.org/show_bug.cgi?id=726123
Creating a new cogl texture may fail, in which case the intent to
free it will crash. While something is clearly wrong (insanely
large window, oom, ...), crashing the WM is harsh and we should
try to avoid it if at all possible, so carry on.
https://bugzilla.gnome.org/show_bug.cgi?id=722266
All WM events (passive button grabs and passive keyboard grabs)
are handled through clutter now, so we must make sure we spoof
them even if they happen on frames (because that's where we
grab on)
Weirdly, clutter stopped segfaulting when we call clutter_x11 methods
and the backend is not right, but this is correct anyway, and
probably fixes some BadDrawable errors in mutter-wayland on x11,
caused by mixing windows of the outer X and windows of Xwayland.
Mouse event handling was duplicated, resulting in weird interactions
if clutter was allowed to see certain events (for example under
wayland, where it gets all events). Because now clutter sees all
X events, even when running as an x11 compositor, we can handle
everything using the clutter variants.
At the same time, rewrite a little the passive button grab code,
to make it clear what is being matched on what and why.
meta_ui_window_is_widget() returns FALSE for frame windows, so we
must filter those explicitly (by letting the event go to gtk
and from there to MetaFrames). Also, for proper gtk widgets
(window menus) we want to let gtk see all events, including
keyboard, otherwise we break keynav in the window menu.
This means that having a window menu open disables keybindings
(because the event doesn't run through clutter)
We must spoof events to clutter even if they are associated
with a MetaWindow, because keyboard events are always associated
with one (the focus window), and we must process keybindings
for window togheter with the global ones if they include Super,
because we're not going to see them again.
... and individually. It turns out that updating the opaque region
was causing the shape region to be updated, which was causing a new
shape mask to be generated and uploaded to the GPU. Considering
GTK+ regenerates the opaque region on pretty much any focus change,
this is not good.