Commit Graph

2209 Commits

Author SHA1 Message Date
Robert Bragg
43f8032a7f matrix-stack: more optimization for load_identity case
This goes a bit further than the previous patch, and as a special case
we now simply represent identity matrices using a boolean, and only
lazily initialize them when they need to be modified.
2009-10-20 12:32:50 +01:00
Robert Bragg
d153316045 [matrix-stack] avoid redundant clearing of matrix when using load_identity
The journal always uses an identity matrix since it uses software
transformation.  Currently it manually uses glLoadMatrix since previous
experimentation showed that the cogl-matrix-stack gave bad performance, but
it would be nice to fix performance so we only have to care about one path
for loading matrices.

For the common case where we do:
cogl_matrix_stack_push()
cogl_matrix_stack_load_identity()
we were effectively initializing the matrix 3 times. Once due to use of
g_slice_new0, then we had a cogl_matrix_init_identity in
_cogl_matrix_state_new for good measure, and then finally in
cogl_matrix_stack_load_identity we did another cogl_matrix_init_identity.

We don't use g_slice_new0 anymore, _cogl_matrix_state_new is documented as
not initializing the matrix (instead _cogl_matrix_stack_top_mutable now
takes a boolean to choose if new stack entries should be initialised) and so
we now only initialize once in cogl_matrix_stack_load_identity.
2009-10-20 12:32:49 +01:00
Robert Bragg
1402d1eb3c [current-matrix] Adds texture matrix stacks + removes GL matrix API usage
This relates back to an earlier commitment to stop using the OpenGL matrix
API which is considered deprecated. (ref 54159f5a1d)

The new texture matrix stacks are hung from a list of (internal only)
CoglTextureUnit structures which the CoglMaterial code internally references
via _cogl_get_texure_unit ().

So we would be left with only the cogl-matrix-stack code being responsible
for glMatrixMode, glLoadMatrix and glLoadIdentity this commit updates the
journal code so it now uses the matrix-stack API instead of GL directly.
2009-10-20 12:32:45 +01:00
Robert Bragg
861766f4ad [cogl-primitives] Split the journal out from cogl-primitives.c
The Journal can be considered a standalone component, so even though
it's currently only used to log quads, it seems better to split it
out into its own file.
2009-10-16 18:58:52 +01:00
Robert Bragg
5387aa0e9e [cogl-spans] split out cogl-spans code from cogl-texture-2d-sliced
When we implement atlas textures we will probably want to use the spans API
to handle texture repeating so it doesn't make sense to leave the code in
cogl-texture-2d-sliced.c.  Since it's a standalone set of data structures
and algorithms it also seems reasonable to split out from cogl-texture.
2009-10-16 18:58:52 +01:00
Vladimir Nadvornik
65015a137e [cogl-texture] Split CoglTexture into an abstract class + CoglTexture2dSliced
cogl-texture-2d-sliced provides an implementation of CoglTexture and this
seperation lays the foundation for potentially supporting atlas textures,
pixmap textures (as in GLX_EXT_texture_from_pixmap) and fast-path
GL_TEXTURE_{1D,2D,3D,RECTANGLE} textures in a maintainable fashion.
2009-10-16 18:58:51 +01:00
Robert Bragg
c40d5ae9ea [cogl-texture] Seal CoglTexture internals from cogl-primitives.c
cogl-primitives.c was previously digging right into CoglTextures so it could
manually iterate the texture slices for texturing quads and polygons and
because we were missing some state getters we were lazily just poking into
the structures directly.

This adds some extra state getter functions, and adds a higher level
_cogl_texture_foreach_slice () API that hopefully simplifies the way in
which sliced textures may be used to render primitives.  This lets you
specify a rectangle in "virtual" texture coords and it will call a given
callback for each slice that intersects that rectangle giving the virtual
coords of the current slice and corresponding "real" texture coordinates for
the underlying gl texture.

At the same time a noteable bug in how we previously iterated sliced
textures was fixed, whereby we weren't correctly handling inverted texture
coordinates.  E.g.  with the previous code if you supplied texture coords of
tx1=100,ty1=0,tx2=0,ty2=100 (inverted along y axis) that would result in a
back-facing quad, which could be discarded if using back-face culling.
2009-10-16 18:58:51 +01:00
Robert Bragg
c943b34cbe [docs] switch gl_handle+gl_target docs for cogl_texture_new_from_foreign
The descriptions for gl_handle and gl_target were inverted.

Thanks to Young-Ho Cha for spotting that.

Signed-off-by: Robert Bragg <robert@linux.intel.com>
2009-10-16 18:58:51 +01:00
Robert Bragg
0bce7eac53 Intial Re-layout of the Cogl source code and introduction of a Cogl Winsys
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.

Currently this is the structure I'm aiming for:
cogl/
    cogl/
	<put common source here>
	winsys/
	   cogl-glx.c
	   cogl-wgl.c
	driver/
	    gl/
	    gles/
	os/ ?
    utils/
	cogl-fixed
	cogl-matrix-stack?
        cogl-journal?
        cogl-primitives?
    pango/

The new winsys component is a starting point for migrating window system
code (i.e.  x11,glx,wgl,osx,egl etc) from Clutter to Cogl.

The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.

Overview of the planned structure:

* The winsys/ API is the API that binds OpenGL to a specific window system,
  be that X11 or win32 etc.  Example are glx, wgl and egl. Much of the logic
  under clutter/{glx,osx,win32 etc} should migrate here.

* Note there is also the idea of a winsys-base that may represent a window
  system for which there are multiple winsys APIs.  An example of this is
  x11, since glx and egl may both be used with x11.  (currently only Clutter
  has the idea of a winsys-base)

* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
  representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
  GLES 1.1 (fixed funciton) and 2.0 (fully shader based)

* Everything under cogl/ should fundamentally be supporting access to the
  GPU.  Essentially Cogl's most basic requirement is to provide a nice GPU
  Graphics API and drawing a line between this and the utility functionality
  we add to support Clutter should help keep this lean and maintainable.

* Code under utils/ as suggested builds on cogl/ adding more convenient
  APIs or mechanism to optimize special cases. Broadly speaking you can
  compare cogl/ to OpenGL and utils/ to GLU.

* clutter/pango will be moved to clutter/cogl/pango

How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"

Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps

As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
2009-10-16 18:58:50 +01:00