Currently the stored unconstrained_rect is only ever updated if there
was a move, resize or state change according to the move_resize_internal
implementation. For Wayland windows however resizes or state changes
are done in two steps, first the new configuration is sent to the client
and then once client acknowledges it, it is set on the mutter side in
another move_resize_internal call. Only the second call would result in
the unconstrained_rect being updated.
This started causing problems when unfullscreening windows was
immediately followed by a strut change. These strut changes started
happening in gnome-shell due to the visibility of the panel now being
considered for the struts and the presence of a fullscreen causing it to
be hidden until unfullscreen. In this situation first the unfullscreen
would resize the window to its pre-fullscreen size as expected, but then
the strut change triggers another window resize. This window resize is
based on the stored unconstrained_rect, which is still at the fullscreen
size because the unfullscreen resize only has sent its configuration,
but it has not been acknowledged yet. As a result the strut change
causes a resize to the fullscreen size which due to the constraints now
looks like a maximized window.
To fix this always update the unconstrained_rect when the requested size
has changed, but not when a previous request has been acknowledged
unless it is originating from the client itself.
If this included the move_resize_internal call from acknowledging the
size as well, it would be possible for this to be delayed long enough on
the client side to overwrite an intermediate resize originating from
mutter. And if this did not include resizes originating from the client,
clients would not be able to set an initial window size.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1973
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2066>
meta_window_wayland_finish_move_resize() is called for both, finishing
a resize that has been requested through/by mutter and for resizes
directly done by the client. This introduces a CLIENT_RESIZE flag to
differentiate the former from the latter. Having this distinction is
required to know what the last requested size by either the client or
mutter is while ignoring older requests that might only have been
applied now.
This excludes client resizes when there are still pending
configurations, because the resize is known to be only temporary.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2066>
Because POSIX sh was, with hindsight, not a particularly well-designed
programming language, if we don't 'set -e', then we'll respond to failure
of a setup command such as cd by carrying on regardless.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2009>
The assumption here seems to be that it's an overlay onto the
current environment which would make sense; but the implementation in
gnome-desktop-testing currently removes all other environment variables
(see GNOME/gnome-desktop-testing#1). This causes test failure when the
tests are run in Debian's autopkgtest framework, possibly because PATH
is cleared.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2009>
Systems with AMD GPUs do not take advantage of Mutter's zero-copy path
when driving DisplayLink screens. This is due to a very slow CPU access
to the zero-copy texture. Instead they fall back on primary GPU doing a
copy of the texture for fast CPU access. This commit accelerates texture
copy by working through damage regions only.
Tests on a 4K screen with windowed applications show significant
reduction of GPU utilisation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2033>
If one would end up with an actor attached to mapped actor, where the
attached actor doesn't itself have an up to date stage view list while
listening on the stage for updating, when clearing the stage views of
the list, anything that would query the stage views list at this time
would end up accessing freed memory.
This could happen if
1) An actor was added to a newly created container actor attached to
the stage
2) The actor got a timeline attached to it
3) The actor was moved to a container that already was mapped
4) A hotplug happened
After (1) both the container and actor would not have any stage views.
After (2) the timeline would listen on the stage for stage views
updates. After (3) the actor would still listen on the stage for stage
views updates. When (4) happened, the actor would be signalled when the
stage got its stage view cleared, at which point it would traverse up
its actor's tree finding an appropriate stage view to base its animation
on. The problem here would be that it'd query the already mapped
container and its yet-to-be-cleared stage view list, resulting in
use-after free, resulting in for example the following backtrace:
0) g_type_check_instance_cast ()
1) CLUTTER_STAGE_VIEW ()
2) clutter_actor_pick_frame_clock ()
3) clutter_actor_pick_frame_clock ()
4) update_frame_clock ()
5) on_frame_clock_actor_stage_views_changed ()
6) g_closure_invoke ()
7) signal_emit_unlocked_R ()
8) g_signal_emit_valist ()
9) g_signal_emit ()
10) clear_stage_views_cb ()
11) _clutter_actor_traverse_depth ()
12) _clutter_actor_traverse ()
13) clutter_actor_clear_stage_views_recursive ()
14) clutter_stage_clear_stage_views ()
...
Avoid this issue by making sure that we don't emit 'stage-views-changed'
signals while the actor tree is in an invalid state. While we now end up
traversing tree twice, it doesn't change the Big-O notation. It has not
been measured whether this has any noticible performance impact.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1950
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2025>
Certains keys (such as ~ and |) are in the keyboard map behind the
second shift level. This means in order for them to be input, the
shift key needs to be held down by the user.
The GNOME Shell on-screen keyboard presents these keys separately on
a page of keys that has no shift key. Instead, it relies on mutter
to set a shift latch before the key event is emitted. A shift latch
is a virtual press of the shift key that automatically gets released
after the next key press (in our case the ~ or | key).
The problem is using a shift latch doesn't work very well in the face
of key repeat. The latch is automatically released after the first
press, and subsequent repeats of that press no longer have shift
latched to them.
This commit fixes the problem by using a shift lock instead of a shift
latch. A shift lock is never implicitly released, so it remains
in place for the duration of key repeat.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2045>
The `guess_candidates()` function scores each display that an input
device could be mapped to and then uses the `sort_by_score()` comparator
to find the best option. The function expects the list to be sorted from
best to worst, but the comparator currently sorts them in the opposite
order. This causes the function to end up returning the _worst_ match
rather than the the best. This commit reverses the sort order of the
comparator so that the best display can be returned as intended.
Closes: #1889
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1934>
Mutter already calculates and tracks the damage rectangles to redraw
only areas of the screen that change since the last time a buffer was
used.
This patch extends this by using the EGL_KHR_partial_update extension to
inform the GPU in advance that only those areas will be changed, which
may allow for further optimization.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2023>
This will make clients immediately aware of the output disappearing,
while still allowing for a grace period of 10 seconds for attempting to
bind to it before it turning into a protocol error. This API added as
part of wayland 1.18.
This requires us to not add the output resource to the output resource
list, if the output was made inert. This effectively makes the resource
useless, but that is harmless, since shortly after, the client will
clean it up anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1796>
This will be crucial when we start to remove the global directly when an
output is removed, as that means Xwayland might have removed the output
before we managed to get our queries in.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1796>
We setup Xwayland in an early phase of the X11 display, before we had a
MetaX11Display, and teared down in a couple of places happening when
tearing down the Xwayland integration if the X server died or
terminated. It was a bit hard to follow what happened and when it
happened. Attempt to clean this up a bit, with things being structured
as follows:
* Early during X11 display connection setup, only setup the rudimentary
X11 hooks, being the libX11 error callbacks, and adding the local
user to XHost.
* Move "initialize Xwayland component" code to a new
'x11-display-setup' signal handler. Things setup here are cleaned up
in the 'x11-display-closing' handler.
* Connect to 'x11-display-setup' and 'x11-display-closing' up front,
and stay connected to these two.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1796>
This old handling of session files looked on ~/.mutter, which has
been unused and unsupported for a long time. It also had paths were
the GError was leaked. Fix both by dropping the legacy code, and
falling back to the common error paths.
CID: #1502682
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2061>
When grabbing the devices, there's no error paths that would quit
late enough that both pointer and keyboard would need ungrabbing,
so the keyboard checks were dead code.
Fix this by dropping the boolean variable checks, and adding goto
labels to unroll the operation properly at every stage.
CID: #1418254
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2061>
The monitor orientation tests do a lot of things in sequence. Replace
some of the comments with g_test_message() so that the log from a failed
test gives us a better idea of how far we got.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2049>
Previously, we were waiting up to 300ms for the signal, then proceeding
anyway. However, 300ms is not necessarily long enough to wait on an
autobuilder that might be heavily loaded, particularly if it's a non-x86
with different performance characteristics.
Conversely, if mutter responds to the D-Bus signal from the mock sensor
before we have connected to the signal, then we cannot expect to receive
the signal - it was already emitted, but we missed it. In this case, we
need to avoid waiting.
One remaining use of wait_for_orientation_changes() that would previously
always have timed out was in
meta_test_orientation_manager_has_accelerometer(), which does not
actually expect to see an orientation-changed signal. Make this wait
for the accelerometer to be detected instead.
Resolves: https://gitlab.gnome.org/GNOME/mutter/-/issues/1967
Bug-Debian: https://bugs.debian.org/995929
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2049>
When we use gbm together with the NVIDIA driver, we want the EGL/Vulkan
clients to do the same, instead of using the EGLStream paths. To achieve
that, make sure to only initialize the EGLStream controller when we
didn't end up using gbm as the renderer backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2052>
This switches the order of what renderer mode is tried first, so that
the gbm renderer mode is preferred on an NVIDIA driver where it is
supported.
We fall back to still try the EGLDevice renderer mode if the created gbm
renderer is not hardware accelerated.
The last fallback is still to use the gbm renderer, even if it is not
hardware accelerated, as this is needed when hardware acceleration isn't
available at all. The original reason for the old order was due to the
fact that a gbm renderer without hardware acceleration would succeed
even on NVIDIA driver that didn't support gbm.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2051>
This replaces functionality that MetaRenderDevice and friends has
learned, e.g. buffer allocation, EGLDisplay creation, with the usage of
those helper objects. The main objective is to shrink
meta-renderer-native.c and by extension meta-onscreen-native.c, moving
its functionality into more isolated objects.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
All render devices that have a device file backing them might be able to
allocate dumb buffers, so add a helper for doing that. Will indirectly
result in an error up front on a surfaceless render device due to lack
of a device file.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
It might not be needed by the user of the buffer, so don't always
require it up front. Instead make sure that any user that needs it first
calls "meta_drm_buffer_ensure_fb_id()" to create the ID.
Only the plain gbm implementation creates the ID lazilly, the other
still does it on construction due to the objects used to create them
only existing during construction.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
Mostly calls into gbm_bo_* API, or something somewhat similar when on
dumb buffers. Added API are:
* get offset for plane
* get bpp (bits per pixel)
* get modifier
This will allow users of MetaDrmBuffer to avoid having to "extract" the
gbm_bo to get these metadata.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
The purpose of MetaRenderDevice is to contain the logics related to a
render device; i.e. e.g. a gbm_device, or an EGLDevice. It's meant to
help abstract away unrelated details from where it's eventually used,
which will be by MetaRendererNative and the MetaOnscreenNative
instances.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
Meant for MetaRenderer and everything related that deals with turning
composited frames, or client buffers, into mode set updates. This is
slightly related to the debug topic 'kms' is meant for the KMS details.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
It was a feature relevant for when Clutter was an application toolkit
that wanted the application window to communicate a minimum size to the
windowing system.
Now, clutter is part of the windowing system component, so this feature
doesn't make any sense, so remove it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
This feature was configured depending on whether the Cogl backend
reported COGL_WINSYS_FEATURE_MULTIPLE_ONSCREEN or not. All cogl backends
do report this, so any code handled the 'static' case were never used.
While we only ever use one stage, it's arguable more correct to
consilidate on the single stage case, but multiple stages is something
that might be desirable for e.g. a remote lock screen, so lets keep this
logic intact.
This has the side effect of completely removing backend features, as
this was the only left-over feature detection that they handled.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
This changes the setup phase of clutter to not be result of calling an
init function that sets up a few global singletons, via global singleton
setup vfuncs.
The way it worked was that mutter first did some initial setup
(connecting to the X11 server), then set a "custom backend" setup vfunc
global, before calling clutter_init().
During the clutter_init() call, the context and backend was setup by
calling the global singleton getters, which implicitly created the
backend and context on-demand.
This has now changed to mutter explicitly creating a `ClutterContext`
(which is actually a `ClutterMainContext`, but with the name shortened to
be consistent with `CoglContext` and `MetaContext`), calling it with a
backend constructor vfunc and user data pointer.
This function now explicitly creates the backend, without having to go
via the previously set global vfunc.
This changes the behavior of some "get_default()" like functions, which
will now fail if called after mutter has shut down, as when it does so,
it now destroys the backends and contexts, not only its own, but the
clutter ones too.
The "ownership" of the clutter backend is also moved to
`ClutterContext`, and MetaBackend is changed to fetch it via the clutter
context.
This also removed the unused option parsing that existed in clutter.
In some places, NULL checks for fetching the clutter context, or
backend, and fetching the cogl context from the clutter backend, had to
be added.
The reason for this is that some code that handles EGL contexts attempts
to restore the cogl EGL context tracking so that the right EGL context
is used by cogl the next time. This makes no sense to do before Cogl and
Clutter are even initialized, which was the case. It wasn't noticed
because the relevant singletons were initialized on demand via their
"getters".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
In various places we retrieved the default seat from the ClutterBackend.
All the clutter backends implement this by calling
meta_backend_get_default_seat() which will then return
MetaBackendPrivate::default_seat.
Lets avoid this by fetching the default seat directly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
Rename all instances of `MetaClutterBackendX11` so they are called
`clutter_backend_x11`. This is because `MetaBackendX11` will start to be
used for some things, and having both be named `backend_x11` would be
confusing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
This one is a trivial wrapper around clutter_actor_get_children(), so just
use that in the two places where clutter_container_get_children() is used,
and remove clutter_container_get_children().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2057>
Quoting the spec for `wl_data_device::drop`:
> If the resulting action is "ask", the action will not be considered
> final. The drag-and-drop destination is expected to perform one last
> wl_data_offer.set_actions request, or wl_data_offer.destroy in order
> to cancel the operation.
We did not respect the action choosen by the drop destination when
it called `wl_data_offer::set_actions` after `wl_data_device::drop`
if a user override was still active. This eventually resulted in
a protocol error in `wl_data_offer::finish`, as the current action
could still be `ask`.
Fix this by only allowing a user override to `ask` before `drop` is
called, thus making sure the final `set_actions` preference is
honored.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1952
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2043>
With each wl_ouitput corresponding to a monitor, the logical monitor is
not part of the MetaWaylandOutput anymore.
Previously, send_xdg_output_events() would compare the old logical
monitor against the new one to determine whether the size and/or
position was changed and should be sent along with the xdg_output
events.
But that logic is now defeated as there is no old/new logical monitor
anymore, so the updated size or location would never be sent again.
Xwayland relies on this information to update its X11 clients and its
own internal root size, without this the X11 screen size and XRandR
information would never be updated.
To avoid that issue, always send the xdg_output size and location on
xdg_output events, Xwayland is smart enough to update its X11 clients
with XRandR only when the layout actually change.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1964
Fixes: bf7c3450 - Make each wl_output correspond to one monitor
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2050>
meta_keymap_x11_replace_keycode currently reports to the X server
that the key types data is changed when adding a key to the keymap.
It's not changed. The number of key types is the same, and none of
them are modified.
This has two bad side effects:
1) It sends all of the key types data into the request
2) It hits a bug in the X server leading to the request getting
rejected entirely. See:
https://gitlab.freedesktop.org/xorg/xserver/-/merge_requests/761
Furthmore, the changed structure used to report to the X server
that the key types data is changed doesn't actually need to modified
at all in the function. It's already prepped by libX11 with the
correct state for the changes mutter is doing when
XkbChangeTypesOfKey is called.
This commit addresses the above two problems by just removing the
lines causing the issues.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2039>
Keys in the reserved keycode list are always added for the first group.
Before the previous commit such keycodes were not found unless that was
the current group. But now that we can also find matching keycodes that
are not directly in the current group, this is not necessary anymore.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1955>
Some keys, such as enter or backspace are only bound to a single group,
even if multiple groups are configured. Because the code was previously
only looking for keysyms in the same group as the current one, no
matching keycodes for these would be found if the current group is not
the first group. This was causing those keys to not work on the X11 OSK.
To fix this use the correct action to convert an out of range group for
that key according to its group_info field.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1955>
This effectively changes meta_keymap_x11_get_entries_for_keyval() to
meta_keymap_x11_get_entry_for_keyval() and moves the check if the
keycode maps to the keyval in the current group there. This simplifies
the code a bit and will allow a followup fix.
As a side effect this now also causes the reserved kecodes to be
searched, if no keycodes were found, rather than just when only ones
matching the wrong groups.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1955>
The extra stage update we schedule in `apply_state()` is mainly
needed in two situations:
- a partial update happened only in obscurred or off-screen parts
of a surface
- a surface requests frame callbacks without having done damage,
notably the (in)famous Firefox vsync implementation.
Commit 0330ce1f15 limited the update to cases when the actor
was mapped, breaking it for Firefox in the overview.
Remove the mapped check again and get the stage from the backend,
restoring previous behaviour.
Fixes 0330ce1f15
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1957
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2034>
Avoid having laptops suspend or lock as soon as the power cable is
unplugged as the timeout for those actions when on battery are smaller
than the timeouts when on AC.
- laptop is plugged in, and hasn't been used for X minutes
- laptop is unplugged
- the gnome-settings-daemon power plugin sets up its timeouts for
inactivity for the "on battery" case
- those X minutes of inactivity are still counting, and are above
the level of one of the timeouts (say, suspend or lock screen),
mutter fires the timeouts
- gsd-power activates the action associated with the timeout
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1953
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2029>
If the ancestor a window is transient for has already been unmanaged
when the window is activated via meta_window_activate_full while its
transient_for property still points to that ancestor, this will cause
the already unmanaged ancestor to get added to the windows workspace.
This is after the ancestor had its workspace set to NULL when it was
unmanaged, causing this to look like an actual workspace change. Once
the window has been added to the workspace, it will never be removed
again, because the it has already been unmanaged. This confuses things
like the shell window tracker and leads to phantom windows being
considered present for apps that are not even running anymore.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4184
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2003>
When a test failed, an exception would be raised. This meant that the
mocked service would stay alive, and the test case being run eventually
failing due to a timeout, not the failure itself.
Fix this by catching the exception during the test, ensuring that we
tear down properly, then re-raise the same exception again after having
teared down.
This avoids the dead lock, while still printing the appropriate error
message.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2008>
With the introduction of MetaContext, the responsibility for handling
signals was changed to the application (e.g. GNOME Shell) using
libmutter. What wasn't fixed was making the stand-alone mutter do the
equivalent as well. This commit fixes this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2007>
When the native backend is paused we still process the udev events
even though this isn't needed and may just cause unneeded events to be
triggered afterwards.
Since we'll resume with full changes on such event, we can just block
the signal hander when paused and restore it afterwards.
As per this we can cleanup also a bit the device adding signal handling
given that now we don't have to disconnect/reconnect it again.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Resume happens after we may have received various events that we've
ignored, so at this point we need to just emit an hotplug event like if
everything changed so that user settings may be re-applied.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
On hotplug events we may get informations about what CRTC or connector
changed a property (and the property itself), so in such case let's just
ignore the changes to the non-affected CRTCs/connectors, and let's read
only the affected one
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
On hotplug events we may receive a "CRTC" or "CONNECTOR" property that
indicates which crtc/connector property ID has changed.
In such case, instead of update data for all the devices, only update the
device containing the relative connector.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Hotplug events may contain CRTC or CONNECTOR ids to notify a property
change to just one owner, so we need to find its parent device.
Also we may want to update properties directly without having to go through
all the devices, so expose a simple way to find them.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
In case we have no devices, after a KMS update (both because they've
all have been removed or because there were none), we may need to behave
differently compared to the case in which nothing changed, so add a more
specific KMS update change type
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
If only gamma changed on drm CRTC's we don't have to rebuild the whole
monitors, nor to inform the backed about, the only consumer could be the
DBus API, and so we still emit a signal, but nothing else is needed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Since we cache already all the KMS parameters we care about let's check at
each device update if anything has really changed and only in such case
emit a resources-changed signal.
In this way we can also filter out the DRM parameters that when changed
don't require a full monitors rebuild.
Examples are the gamma settings or the privacy screen parameters, that
emits an udev "hotplug" event when changed, but we want to register those
only when we handle the changed property.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
A client request for maximizing itself should always be handled by mutter
by emitting a configure event with the native maximized resolution,
regardless of the client's own set limits. This also aligns the behavior by
allowing fixed-sized windows to go into fullscreen or maximized state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1997>
It works correctly with scanouts, in contrast to
clutter_stage_capture_into. Inspired by
meta_screen_cast_area_stream_src_record_to_buffer.
maybe_paint_cursor_sprite is now unused and thus removed.
v2:
* clutter_stage_paint_to_buffer requires switching to recording from an
idle callback as well. (Jonas Ådahl)
v3:
* Set human readable name for idle source. (Ivan Molodetskikh)
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1940
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1914>
The way wl_seat capabilities work, by notifying clients of capabilities
changes, and clients consequently requesting the relevant interface
objects (pointer, keyboard, touch) is inherently racy.
On quick VT changes for example, capabilities on the seat will be added
and removed, and by the time the client receives the capability change
notification and requests the relevant keyboard, pointer or touch,
another VT switch might have occurred and the wl_pointer, wl_keyboard or
wl_touch already destroyed, leading to a protocol error which kills the
client.
To avoid this, create the objects when requested regardless of the
capabilities.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1797
Related: https://bugzilla.gnome.org/show_bug.cgi?id=790932
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/77>
Analogous to `get_image()` this returns a `ClutterContent` for a
given `MetaWindowActor`. This can be used to implement window
effects without a roundtrip from GPU to CPU memory.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1893>
In X11 when we switch to another tty all the the signals are blocked (as
the display fd is not replying back to polling, causing the main loop to
stop), and they are all handled once we switch back to the tty.
This is not a problem for most of external events, but in case of
accelerometer changes, once we reactivate a mutter session we'll get
them all together, causing lots of monitor reconfigurations leading to
black screen for some seconds and most of the times to a wrong
configuration being applied.
To avoid this, batch all these events using an idle to only apply the
last one we got in a loop.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1217
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
Create a test system bus and use it to run all the tests, add a mock
SensorsProxy (via dbusmock template) server that implements the
net.hadess.SensorProxy interface.
To make testing easier, the service is created on request of a proxy for
it, whose lifetime controls the mock service lifetime as well.
This is done using a further mock service that is used to manage the
others, using python-dbusmock to simplify the handling.
Add basic tests for the orientation manager.
As per the usage dbusmock, we're now launching all the tests under such
wrapper, so that local dbus environment won't ever considered, and
there's no risk that it may affect the tests results both locally and in
CI.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
When creating the configuration for the builtin monitor we try to get
the panel configuration for the builtin panel, but we don't proceed if
that monitor is currently inactive.
This is fine when adjusting an active configuration to the current
device rotation, but it isn't correct when we want to create a new
configuration based on another where the monitor is configured but not
yet enabled.
So, only find the panel configuration without looking the current state
but ensuring that the passed configuration will enable it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
When we get an orientation event we don't care about keeping track of the
configuration changes, but actually we can consider the new configuration
just a variant of the previous one, adapted to floating device hardware
events, so we only want to apply it if possible, but we don't want to keep
a record of it for reverting capabilities.
Doing that would in fact, break the ability of reverting back to an actual
temporary or persistent configuration.
For example when device orientation events happen while we're waiting for
an user resolution change confirmation, we would save our new rotated
configuration in the history, making then impossible to revert back to
the original persistent one.
So in such case, don't keep track of those configurations in the history,
but only keep track of the last one as current, checking whether the
new current is child or sibling of the previously one.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1221
Related to: https://gitlab.gnome.org/GNOME/mutter/-/issues/646
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
When creating a configuration taking orientation into account we're using
the sensors orientation even if this is currently not used (for example
when an accelerator is available, but there's no touch screen).
This would cause to have a different behavior when configuration is
created and when we're loading a known configuration on startup.
So always honor whether the monitor's orientation is managed or not.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
All the auto-rotation code is expecting to have a built-in panel, but we
still monitor accelerometer changes if we don't have one (uncommon, but
possible).
Thus manage the panel orientation in such case and update it on monitors
changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
These are ClutterInputFocus subclasses, so this will trigger reset of
the input method. As the .done event is possibly deferred in the
zwp_text_input_v3 implementation, ensure the changes caused by the
reset are flushed immediately, before the button press is forwarded
to the client by MetaWaylandPointer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1940>
This commit adds support to atomic KMS backend for optional plane property
prop_fb_damage_clips. Some drivers (e.g. EVDI) take advantage of this
property and process only updated regions of the screen instead of
processing the full frame. This can save system resources.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1879>
Added a function `meta_window_set_inactive_since` it sets
xattr on the cgroup directory for the given MetaWindow.
Resource management daemons can then monitor these changes on xattr
and make allocation decisions accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
Currently the only way to get cgroup for a MetaWindow is to get it's
PID and perform a bunch of file accesses and string manipulations.
This is especially not feasible if we want to get the cgroup every
time a MetaWindow has gained or lost focus.
A solution to this is to cache the GFile for a cgroup path.
The creation and access of this GFile is handled by
`meta_window_get_unit_cgroup` function.
`meta_window_unit_cgroup_equal` is a utility function which allows
us to compare whether two MetaWindows belong to the same cgroup.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
To utilize the API provided by libsystemd it would be better to
create a separate HAVE_LIBSYSTEMD configuration option instead of
having to rely on HAVE_NATIVE_BACKEND.
For now this will be utilized for getting the control group of a
MetaWindow.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
and the subsurface was not previously detached from it using
`wl_subsurface_destroy()`.
Without 'window-actor/wayland: Remove subsurface actors on dispose' this
test would fail.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1958>
commit c4a73e7950 added
code to cleanup the renderer when the meta backend is
disposed. Unfortunately, this introduced a crash when
the window manager is replaced.
This is because cleaning up the renderer involves talking
to the X server over a display connection that's closed
two lines higher as part of the clutter_backend_destroy
call.
This commit fixes the crash by swapping their order.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1965>
There is very little point in sending an X11 client message to
gnome-panel in case gnome-shell isn't handling the binding. We
can just as well do nothing, so do exactly that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1886>