This is useful to visualize which parts of the screen are being
damaged.
Add a new 'damage-region' value for CLUTTER_PAINT and paint the
damaged regions accordingly.
This adds the required bits to wayland surfaces and ties them up
to the compositor parts.
The central part here is to recalculate the surface size accordingly
and to translate surface damage into buffer damage.
The choosen approach additionally lays groundwork for wp_viewporter
support, which is closely related in its nature.
A further explanation of buffer transforms from the specification:
> The purpose of this request is to allow clients to render content
> according to the output transform, thus permitting the compositor
> to use certain optimizations even if the display is rotated.
> Using hardware overlays and scanning out a client buffer for
> fullscreen surfaces are examples of such optimizations.
This adds the necessary bits to support Wayland buffer transforms.
The main part here is to properly setup the Cogl pipeline
and to recalculate the size of the painted area accordingly,
so culling etc. still works.
The choosen approach additionally lays groundwork for Wayland
wp_viewporter support.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/322
This commit includes following fixes for a few shell scripts:
1. Follow the best practice of quoting variables everywhere unless they
are used in places where word-splitting and globbing can never happen.
2. Replace `command` with $(command) because the latter is easier to use
and read.
3. Don't use "$@" in places expecting a string because it is an array
of strings instead of a single string.
Bash is not always installed in /bin and we should not hardcode the path
of it in source code which is expected to be built on many operating
systems and distributions.
Since most scripts using #!/bin/bash here doesn't have any bashism,
they can be converted to #!/bin/sh instead of using /usr/bin/env trick.
Commit 70036429bd mixed drag_origin and drag_surface, leading to warnings
and invisible drag icon. Fix this up so we correctly set up the feedback
actor. This will correctly display the DnD icon alongside the pointer.
It is meant to hold surfaces that require a ClutterActor, just like wl/xdg
shell surfaces and subsurfaces. Make it inherit from MetaWaylandActorSurface
so it gets that for free.
The type declaration is also made completely private, in order to avoid
cyclic dependency between meta-wayland-surface.h and
meta-wayland-actor-surface.h. We just require the GType fro assign_role()
anyway.
Modal ungrabs may be followed by other clients trying to grab themselves,
flush the connection so we ensure the right order of events on the Xserver
side.
An example of this is js/ui/modalDialog.js in gnome-shell, as the alt-F2
dialog may launch X11 clients trying to grab themselves, commit a40daa3c22
in gnome-shell handled the case and added a gdk_display_sync() call to
ensure no grab existed at the time of executing.
This commit aims to achieve the same built in MetaBackend. A full sync
seems excessive though, as we just need to make sure the server got the
messages queued before the other side tries to grab, a XFlush seems
sufficient for this.
The nested backend used the value from udev, meaning that one couldn't
configure the fake monitor if the laptop panel of the host was closed.
Avoid this annoyance by always having the nested backend claiming the
lid is open.
If meson tries to get ahead and generate object files for tests
at the same time than building libmutter, those may randomly fail
if meson did not create the libmutter generated headers yet.
Add those to the declared dependency, so the files are ensured to
be created before anything gets to use it.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/404
It wasn't implemented by any subclass, it's not provided by DRM either.
And even if a subclass were to have only a file available, it could read
it into a GBytes as well and just use `read_edid()`.
Found this while working on !269.
It's a UI pattern that has been superseded by client-side decorations,
apps that used to set the hint have generally moved on to headerbars.
Given that and the limitation to server-side decorated X11 windows,
GTK4 removed the client-side API for setting the hint, it's time to
follow suite and retire the feature.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/221
It cuts out some of the GObject boilerplate, and gives us g_autoptr()
support for free.
Since this changes the ABI, we also need to bump the libmutter API
version.
Because it is implemented and always on. By advertising this fact
the master clock is able to sync to the native refresh rate instead
of always using the fallback of 60.00Hz.
https://bugzilla.gnome.org/show_bug.cgi?id=781296
Add support for getting hardware presentation times from KMS (Wayland
sessions). Also implement cogl_get_clock_time which is required to compare
and judge the age of presentation timestamps.
For single monitor systems this is straightforward. For multi-monitor
systems though we have to choose a display to sync to. The compositor
already partially solves this for us in the case of only one display
updating because it will only use the subset of monitors that are
changing. In the case of multiple monitors consuming the same frame
concurrently however, we choose the fastest one (in use at the time).
Note however that we also need !73 to land in order to fully realize
multiple monitors running at full speed.
This macro was introduced so as to be able to be built without GLib.
However, this feature was long ago removed, and in Mutter we depend on
it anyway, so let's get rid of it in favor of more consistency.
This is based on `g_clear_object`, so it will be a bit more consistent
to write (and prevents the headaches from accidentally forgetting a NULL
check).
Use cogl_framebuffer_read_pixels_into_bitmap () instead of
glReadPixels () for the CPU copy path in multi-GPU support.
The cogl function employs several tricks to make the read-pixels as fast
as possible and does the y-flip as necessary. This should make the copy
more performant over all kinds of hardware.
This is expected to be used on virtual outputs (e.g. DisplayLink USB
docks and monitors) foremost, where the dumb buffer memory is just
regular system memory. If the dumb buffer memory is somehow slow, like
residing in discrete VRAM or having an unexpected caching mode, it may
be possible for the cogl function perform worse because it might do the
y-flip in-place in the dumb buffer. Hopefully that does not happen in
any practical scenario.
Calling meta_renderer_native_gles3_read_pixels () here was conceptually
wrong to begin with because it was done with the Cogl GL context of the
primary GPU, not on the GL ES 3 context of a secondary GPU. However,
due eglBindAPI being a no-op in Mesa and the glReadPixels () arguments
being compatible, it worked.
This patch adds a pixel format conversion table between DRM and Cogl
formats. It contains more formats than absolutely necessary and the
texture components field which is currently unused for completeness. See
Mutter issue #323. Making the table more complete documents better how
the pixel formats actually map so that posterity should be less likely
to be confused. This table could be shared with
shm_buffer_get_cogl_pixel_format () as well, but not with
meta_wayland_dma_buf_buffer_attach ().
On HP ProBook 4520s laptop (Mesa DRI Intel(R) Ironlake Mobile, Mesa
18.0.5), without this patch copy_shared_framebuffer_cpu () for a
DisplayLink output takes 5 seconds with a 1080p frame. Obviously that
makes Mutter and gnome-shell completely unusable. With this patch, that
function takes 13-18 ms which makes it usable if not fluent.
On Intel i7-4790 (Mesa DRI Intel(R) Haswell Desktop) machine, this patch
makes no significant difference (the copy takes 4-5 ms).