When the X11 display is actually XWayland there's no point to delay the
compositor selection, given that mutter itself is the compositor and
doing this may cause the first X11 client that starts not to receive the
right information (and in some cases misbehave).
Since some toolkits are not handling the compositor selection changes
properly at later times, let's make their life easier by just
initializing the selection as early as the other X11 properties, given
that in this case there's nothing to replace.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2472
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2970>
This ensures that applications are notified when a drag gets cancelled
because the user dropped or press ESC while in overview.
This fixes an issue with Chromium on Wayland refusing to acknowledge
wl_pointer::enter events after accidentally dropping a
Chromium-originated object in GNOME Shell overview.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2953>
The anchor position calculations are somewhat unnecessarily complex
based on root coordinates of pointer and frame positions. This requires
tracking both things, and we don't always get it quite right with the
latter (e.g. window repositions, resizes or overshrinks, leaving the
anchor position visually outside the window).
In order to improve this, capture the window-relative coordinates
when starting the window drag, and ensure the window is always repositioned
in that position, relative to its current size.
This avoids these glitches when unmaximizing a window (e.g. dragged from
the bottom through super+button1 press), or moving windows between monitors
with different scales.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2730
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2942>
Since we only track changes to window_drag->anchor_window_pos
during move operations through on_grab_window_size_changed(), this
rectangle is in essence the same than window_drag->initial_window_pos
all the time. Just use that and move away from the anchor_window_pos
rectangle.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2942>
scan_visible_region() scans through each value of a uint8_t array and checks
whether that value is 255. Right now it always checks one value too much
though, resulting in a buffer overflow. Fix that by checking the array
bounds before actually accessing the array.
Found by running gnome-shell with address sanitizer and starting
GIMP.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2856>
Both GRAB_OP_KEYBOARD_MOVING and GRAB_OP_KEYBOARD_RESIZING_* are
defined as GRAB_OP_WINDOW_BASE with FLAG_KEYBOARD set, but the
latter have additional bits set to indicate the direction.
That is, the GRAB_OP_KEYBOARD_MOVING bitmask cannot be used to
differentiate between move- and resize operations. Instead,
check that no direction bits are set.
https://gitlab.gnome.org/GNOME/mutter/-/issues/2684
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2908>
Linear sampling can influence the value of surrounding pixels beyond
the scaled framebuffer extents calculated during stage view rendering,
resulting in flickering graphical artifacts due to unaccounted pixel
changes. This is exhibited in xfreerdp and wlfreerdp at 150% display
scaling.
Fix this by ensuring that all pixels that may be affected by linear
scaling is included in the framebuffer redraw clip by padding the actor
redraw clip.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2771>
We were relying on gdk_cairo_region() to convert a cairo_region_t
into a path ready to fill/stroke in a cairo_t. This is a small
and detached helper that we can do ourselves, so put it together
with all other region helper functions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2864>
Surfaces belonging to a screen-casted window should always be considered
visible even if they are not visible on any stage view - be it because
they are on a different workspace, minimized or occluded.
Doing this in an optimal fashion is highly complex right now -
interdependent with (and somewhat similar to) ClutterClones. Thus treat
stream-casted surfaces similar to those with clones, with the small
difference that even a fully invisible surface still gets a primary view
- the fastest one. This ensures that clients never refresh too slow for a
screen-cast, at the cost of sometimes refreshing too fast.
The later only happens on certain multi-monitor setups and should thus be
acceptable.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2789>
Screen-casted windows need to be considered visible in various situations
but existing APIs such as `clutter_actor_is_effectively_on_stage_view()`
don't do so. Add new API that allows checking if a surface belongs to a
screen-casted window for the respective cases.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2789>
The introduction of the META_GRAB_OP_WINDOW_FLAG_UNCONSTRAINED
flag threw off some checks around keyboard-driven resize. This
was partly because there were some == checks that did not account
for that flag maybe being enabled, but also the handling
of META_GRAB_OP_KEYBOARD_RESIZING_UNKNOWN into a definite
resize direction was maybe unsetting that flag. Fix both things
at the same time.
Fixes: 2d8fa26c8e ("core: Pass "frame action" grab operations as an "unconstrained" grab op")
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2629
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2871>
In the case where we early-out from meta_window_drag_begin(), the
effective_drag_window might not be set yet. In this case, we might finalize
the object before effective_drag_window is set, leading to a NULL pointer
when accessing window->display in hide_tile_preview().
To avoid that crash, add a check whether the window is set already. If no
window is set, we can just skip hiding the preview anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2858>
At least indirectly, this is set as object qdata while the
window drag is ongoing, and reset/reconstructed if needed.
Consequently, this edge data does not need to be stored in
the MetaDisplay struct anymore.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Even though the data is still stored in the display, add a "high
level" meta_window_drag_update_edges() call, so that the cached
edges may be updated while a window drag operation is ongoing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This is a public API change. Add device/sequence parameters to this
operation, so that window dragging and resizing can stick to one
set of pointing events of them all.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Flip the switch in using MetaWindowDrag, leaving display grab
ops and a bunch other code unused. Some places checked the grab op
and/or window in complex ways, others just checked for grab existence
and should now look for clutter ones, and others already were already
doing this in addition.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This helper object (and the whole window drag operation) will be
requested to the compositor instead of created directly, and only
one of those can exist at a time, so the compositor will also
safeguard that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Since SSD X11 windows require synchronization between frame and client
windows on resizes, updates do not always happen immediately but in
control of external factors (i.e. when both windows become to have
a coherent size).
This method will be used to update the window position between
resize/sync operations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This compositor-side object will single-handedly drive a window
drag operation. Currently, this largely copies meta_display_begin_grab_op
and meta_display_end_grab_op, except grabbing is done through a
ClutterGrab instead of direct meta_backend_grab_device() calls. This
also means that the switch from passive to active keyboard grabs is
handled differently.
Currently, this object is dormant. It requires moving more code from
other places to become a fully functional replacement.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
That means before-update, prepare-paint, before-paint, paint-view, after-paint,
after-update. While yet to be used, it will be used as a transient frame
book keeping object, to maintain object and state that is only valid
during a frame dispatch.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2795>
I hit this rare error running the "x11" test from the suite locally:
(mutter:194027): Gdk-ERROR **: 18:21:52.525: The program 'mutter' received an X Window System error.
This probably reflects a bug in the program.
The error was 'BadDrawable (invalid Pixmap or Window parameter)'.
(Details: serial 663 error_code 9 request_code 143 (DAMAGE) minor_code 1)
(Note to programmers: normally, X errors are reported asynchronously;
that is, you will receive the error a while after causing it.
To debug your program, run it with the GDK_SYNCHRONIZE environment
variable to change this behavior. You can then get a meaningful
backtrace from your debugger if you break on the gdk_x_error() function.)
The only call from the Damage extension in use by Mutter that could
return BadDrawable is XDamageCreate(), and it's likely to be this
call. Wrap this X11 in an error trap, in order to catch possible
failures.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2793>
Things like meta_compositor_destroy() and meta_compositor_add_window()
isn't intended to be used externally, and if they was, things would
probably fall apart rather quickly.
MetaCompositor also isn't introspected, meaning things that technically
belong to the compositing parts isn't easily available via some object,
but much take detours via other objects like MetaDisplay.
So move the API intended for internal usage to compositor-private.h, and
leave API that is meant to be expose in the public compositor.h.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>
As with the backend commit, this means all objects can reach the
MetaContext by walking up the chain, thus can e.g. get the backend from
the context, instead of the global singleton.
This also is a squashed commit containing:
compositor: Get backend via the context
The MetaCompositor instance is owned by MetaDisplay, which is owned by
MetaContext. Get the backend via that chain of ownership.
dnd: Don't get backend from singleton
window-actor: Don't get backend from singleton
dnd: Don't get Wayland compositor via singleton
background: Don't get the monitor manager from the singleton
plugins: Don't get backend from singleton
This applies to MetaPlugin, it's manager class, and the default plugin.
feedback-actor: Pass a compositor pointer when constructing
This allows getting to the display.
later: Keep a pointer to the manager object
This allows using the non-singleton API in idle callbacks.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>