Damage coordinates are relative to the drawable not to the screen. So we
have to check whether x and y are 0 and not window_rect.x/y otherwise the
herustic will never trigger for windows on monitors whos x and y are not 0.
https://bugzilla.gnome.org/show_bug.cgi?id=738271
It doesn't make sense to update it in the surface actor. It's also
theoretically wrong to update the buffer's texture on surface commit,
too, because it's buffer state, not surface state, but I don't think
there's any place we use a wl_buffer without a wl_surface.
cogl_texture_get_components can be used on both X11 and Wayland
backends. Technically, the detection is different: we actually
check the actual RENDER format in the old code, while Cogl simply
assumes that any pixmap with a depth >= 32 is ARGB32. Since Cogl
already seems to be working with its internal checks, it makes
more sense to use Cogl's check rather than keeping our own.
meta_ui_window_is_widget() returns FALSE for frame windows, so we
must filter those explicitly (by letting the event go to gtk
and from there to MetaFrames). Also, for proper gtk widgets
(window menus) we want to let gtk see all events, including
keyboard, otherwise we break keynav in the window menu.
This means that having a window menu open disables keybindings
(because the event doesn't run through clutter)
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631