This adds compiler symbol deprecation declarations for old Cogl APIs so
that users can easily see via compiler warning when they are using these
symbols, and also see a hint for what the apis should be replaced with.
So that users of Cogl can manage when to show these warnings this
introduces a scheme borrowed from glib whereby you can declare what
version of the Cogl api you are using:
COGL_VERSION_MIN_REQUIRED can be defined to indicate the oldest Cogl api
that the application wants to use. Cogl will only warn about
deprecations for symbols that were deprecated earlier than this required
version. If this is left undefined then by default Cogl will warn about
all deprecations.
COGL_VERSION_MAX_ALLOWED can be defined to indicate the newest api
that the application uses. If the application uses symbols newer than
this then Cogl will give a warning about that.
This patch removes the need to maintain the COGL_DISABLE_DEPRECATED
guards around deprecated symbols.
This patch fixes a few uses of deprecated symbols in the examples/
Reviewed-by: Neil Roberts <neil@linux.intel.com>
gtk-doc complains that having a sentence starting by Return is a bit
ambiguous and it'd rather see 'Returns:' spelled out.
Fixes 2 warnings:
warning: Free-form return value description in $symbol. Use `Returns:'
to avoid ambiguities
(cherry picked from commit 9718f31717b3a0e01b7c4c69cea138f39d23c0e0)
We have found several times now when writing code using Cogl that it
would really help if Cogl's matrix stack api was public as a utility
api. In Rig for example we want to avoid redundant arithmetic when
deriving the matrices of entities used to render and we aren't able
to simply use the framebuffer's matrix stack to achieve this. Also when
implementing cairo-cogl we found that it would be really useful if we
could have a matrix stack utility api.
(cherry picked from commit d17a01fd935d88fab96fe6cc0b906c84026c0067)
This fixes some problems which were stopping --disable-glib from
working properly:
• A lot of the public headers were including glib.h. This shouldn't be
necessary because the API doesn't expose any glib types. Otherwise
any apps would require glib in order to get the header.
• The public headers were using G_BEGIN_DECLS. There is now a
replacement macro called COGL_BEGIN_DECLS which is defined in
cogl-types.h.
• A similar fix has been done for G_GNUC_NULL_TERMINATED and
G_GNUC_DEPRECATED.
• The CFLAGS were not including $(builddir)/deps/glib which was
preventing it finding the generated glibconfig.h when building out
of tree.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 4138b3141c2f39cddaea3d72bfc04342ed5092d0)
As a convenience for debugging this adds a cogl_debug_matrix_print
function that prints out the components of a matrix and any internal
flags associated with the given matrix.
(cherry picked from commit 3b33889ff1204f19347a9548320ba95baa54c18c)
This adds the following new functions to apply a rotation described by
a euler or a quaternion to either a CoglMatrix or directly to the
modelview stack of a framebuffer:
cogl_matrix_rotate_quaternion
cogl_matrix_rotate_euler
cogl_framebuffer_rotate_quaternion
cogl_framebuffer_rotate_euler
The direct framebuffer functions have corresponding functions in the
CoglMatrixStack to store an entry describing the rotation.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 5064315678b496395e1d01f266f322d73e55e324)
This creates a matrix to represent the given euler rotation. This
should be more efficient than creating the matrix by doing three
separate rotations because no separate intermediate matrices are
created and no matrix multiplication is needed.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit e66d9965897999a4889063f6df9a20ea6abf97fe)
The quaternion is not modified so for consistency with the rest of the
API it should probably be const.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 7fa8c05c2ffb90cba03289a04e37866efc0890a5)
This allows people to initialize a matrix with a translation
transformation. The options to do it at the moment were:
* init_from_array() but it give cogl no information about the type of
matrix.
* init_indentity() and then translate() but it means doing a lot of
computations for no reason.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 068b3b59221e405dc288d434b0008464684a7c12)
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
We are in the process of removing all _EXP suffix mangling for
experimental APIs (Ref: c6528c4b6c) and adding missing gtk-doc
comments so that we can instead rely on the "Stability: unstable"
markers in the gtk-doc comments. This patch tackles the matrix api
symbols.
This update some of the cogl-matrix.h documentation to be consistent
with the corresponding documentation for framebuffer matrix-stack
methods in cogl-framebuffer.h
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds an experimental cogl_matrix_orthographic() function that is
more consistent with other Cogl api by taking x_1, y_1, x_2, y_2
arguments to define the top-left and bottom-right coordinates of the
orthographic coordinates instead of OpenGL style left, right, bottom and
top values.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Similar to the widely used gluLookAt API, this adds a CoglMatrix utility
for setting up a view transform in terms of positioning a camera/eye
position that points to a given object position aligned to a given
world-up vector.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a function called cogl_matrix_is_identity that can determine
if a given matrix is an identity matrix or not.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
To help catch accidental changes to the size of public structs that can
be allocated on the stack this patch adds compile time checks that our
struct sizes haven't changed.
This adds an experimental quaternion utility API. It's not yet fully
documented but it's complete enough that people can start to experiment
with using it. It adds the following functions:
cogl_quaternion_init_identity
cogl_quaternion_init
cogl_quaternion_init_from_angle_vector
cogl_quaternion_init_from_array
cogl_quaternion_init_from_x_rotation
cogl_quaternion_init_from_y_rotation
cogl_quaternion_init_from_z_rotation
cogl_quaternion_equal
cogl_quaternion_copy
cogl_quaternion_free
cogl_quaternion_get_rotation_angle
cogl_quaternion_get_rotation_axis
cogl_quaternion_normalize
cogl_quaternion_dot_product
cogl_quaternion_invert
cogl_quaternion_multiply
cogl_quaternion_pow
cogl_quaternion_slerp
cogl_quaternion_nlerp
cogl_quaternion_squad
cogl_get_static_identity_quaternion
cogl_get_static_zero_quaternion
Since it's experimental API you'll need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h.
Instead of unconditionally combining the modelview and projection
matrices and then iterating each of the vertices to call
cogl_matrix_transform_point for each one in turn we now only combine the
matrices if there are more than 4 vertices (with less than 4 vertices
its less work to transform them separately) and we use the new
cogl_vertex_{transform,project}_points APIs which can hopefully
vectorize the transformations.
Finally the perspective divide and viewport scale is done in a separate
loop at the end and we don't do the spurious perspective divide and
viewport scale for the z component.
This adds two new experimental functions to cogl-matrix.c:
cogl_matrix_view_2d_in_perspective and cogl_matrix_view_2d_in_frustum
which can be used to setup a view transform that maps a 2D coordinate
system (0,0) top left and (width,height) bottom right to the current
viewport.
Toolkits such as Clutter that want to mix 2D and 3D drawing can use
these APIs to position a 2D coordinate system at an arbitrary depth
inside a 3D perspective projected viewing frustum.
This adds a note to clarify that cogl_matrix_multiply allows you to
multiply the @a matrix in-place, so @a can equal @result but @b can't
equal @result.
To allow us to have gobject properties that accept a CoglMatrix value we
need to register a GType. This adds a cogl_gtype_matrix_get_type function
that will register a static boxed type called "CoglMatrix".
This adds a new section to the reference manual for GType integration
functions.
As a pre-requisite for being able to register a boxed GType for
CoglMatrix (enabling us to define gobject properties that accept a
CoglMatrix) this adds cogl_matrix_copy and _free functions.
This add two new function that allows us to transform or project an
array of points instead of only transforming one point at a time. Recent
benchmarking has shown cogl_matrix_transform_point to be a bottleneck
sometimes, so this should allow us to reduce the overhead when
transforming lots of vertices at the same time, and also reduce the cost
of 3 component, non-projective transforms.
For now they are marked as experimental (you have to define
COGL_ENABLE_EXPERIMENTAL_API) because there is some concern that it
introduces some inconsistent naming. cogl_matrix_transform_point would
have to be renamed cogl_matrix_project_point to be consistent, but that
would be an API break.
This adds a way to compare two CoglMatrix structures to see if they
represent the same transformations. memcmp can't be used because a
CoglMatrix contains private flags and padding.
CoglColor and CoglMatrix have public declarations with private members
so that we are free to change the implementation but the structures
could still be allocated on the stack in applications. However it's
quite easy not to realise the members are private and then access them
directly. This patch wraps the members in a macro which redefines the
symbol name when including the header outside of the clutter source.
http://bugzilla.openedhand.com/show_bug.cgi?id=2065
The xx, yx, zx etc fields are meant to be read-only but they were
marked as private with the gtk-doc annotation. This patch moves the
private marker so that the 16 float member fields are public but the
type, inverted matrix, flags and padding are not.
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.
Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.
As a side note: this commit closes the oldes bug in Clutter's bug
report tool.
http://bugzilla.openedhand.com/show_bug.cgi?id=521
We've had complaints that our Cogl code/headers are a bit "special" so
this is a first pass at tidying things up by giving them some
consistency. These changes are all consistent with how new code in Cogl
is being written, but the style isn't consistently applied across all
code yet.
There are two parts to this patch; but since each one required a large
amount of effort to maintain tidy indenting it made sense to combine the
changes to reduce the time spent re indenting the same lines.
The first change is to use a consistent style for declaring function
prototypes in headers. Cogl headers now consistently use this style for
prototypes:
return_type
cogl_function_name (CoglType arg0,
CoglType arg1);
Not everyone likes this style, but it seems that most of the currently
active Cogl developers agree on it.
The second change is to constrain the use of redundant glib data types
in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all
been replaced with int, unsigned int, float, long, unsigned long and char
respectively. When talking about pixel data; use of guchar has been
replaced with guint8, otherwise unsigned char can be used.
The glib types that we continue to use for portability are gboolean,
gint{8,16,32,64}, guint{8,16,32,64} and gsize.
The general intention is that Cogl should look palatable to the widest
range of C programmers including those outside the Gnome community so
- especially for the public API - we want to minimize the number of
foreign looking typedefs.
This new API takes advantage of the recently imported Mesa code to support
inverse matrix calculation. The matrix code keeps track (via internal
flags) of the transformations a matrix represents so that it can select an
optimized inversion function.
Note: although other aspects of the Cogl matrix API have followed a similar
style to Cairo's matrix API we haven't added a cogl_matrix_invert API
because the inverse of a CoglMatrix is actually cached as part of the
CoglMatrix structure meaning a destructive API like cogl_matrix_invert
doesn't let users take advantage of this caching design.
This pulls in code from Mesa to improve our matrix manipulation support. It
includes support for calculating the inverse of matrices based on top of a
matrix categorizing system that allows optimizing certain matrix types.
(the main thing we were after) but also adds some optimisations for
rotations.
Changes compared to the original code from Mesa:
- Coding style is consistent with the rest of Cogl
- Instead of allocating matrix->m and matrix->inv using malloc, our public
CoglMatrix typedef is large enough to directly contain the matrix, its
inverse, a type and a set of flags.
- Instead of having a _math_matrix_analyse which updates the type, flags and
inverse, we have _math_matrix_update_inverse which essentially does the
same thing (internally making use of _math_matrix_update_type_and_flags())
but with additional guards in place to bail out when the inverse matrix is
still valid.
- When initializing a matrix with the identity matrix we don't immediately
initialize the inverse matrix; rather we just set the dirty flag for the
inverse (since it's likely the user won't request the inverse of the
identity matrix)
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.