This function can be used as an efficient way of drawing groups of
quads without using GL_QUADS. It generates a VBO containing the
indices needed to render using pairs of GL_TRIANGLES. The VBO is
globally cached so that it only needs to be uploaded whenever more
indices are requested than ever before.
These are necessary if nesting redirections to an fbo,
otherwise there's no way to know how to restore
previous state.
glPushAttrib(GL_COLOR_BUFFER_BIT) would save draw buffer
state, but also saves a lot of other stuff, and
cogl_draw_buffer() relies on knowing about all draw
buffer state changes. So we have to implement a
draw buffer stack ourselves.
Signed-off-by: Robert Bragg <robert@linux.intel.com>
Adds missing notices, and ensures all the notices are consistent. The Cogl
blurb also now reads:
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
The cogl_is_* functions were showing up quite high on profiles due to
iterating through arrays of cogl handles.
This does away with all the handle arrays and implements a simple struct
inheritance scheme. All cogl objects now add a CoglHandleObject _parent;
member to their main structures. The base object includes 2 members a.t.m; a
ref_count, and a klass pointer. The klass in turn gives you a type and
virtual function for freeing objects of that type.
Each handle type has a _cogl_##handle_type##_get_type () function
automatically defined which returns a GQuark of the handle type, so now
implementing the cogl_is_* funcs is just a case of comparing with
obj->klass->type.
Another outcome of the re-work is that cogl_handle_{ref,unref} are also much
more efficient, and no longer need extending for each handle type added to
cogl. The cogl_##handle_type##_{ref,unref} functions are now deprecated and
are no longer used internally to Clutter or Cogl. Potentially we can remove
them completely before 1.0.
This is useful because sometimes we need to get the current matrix, which
is too expensive when indirect rendering.
In addition, this virtualization makes it easier to clean up the API in
the future.
This updates cogl/gles in line with the integration of CoglMaterial throughout
Cogl that has been done for cogl/gl.
Note: This is still buggy, but at least it builds again and test-actors works.
Some GLES2 specific changes were made, but these haven't been tested yet.
This better reflects the fact that the api manages sets of vertex attributes,
and the attributes really have no implied form. It is only when you use the
attributes to draw that they become mesh like; when you specify how they should
be interpreted, e.g. as triangle lists or fans etc. This rename frees up the
term "mesh", which can later be applied to a concept slightly more fitting.
E.g. at some point it would be nice to have a higher level abstraction that
sits on top of cogl vertex buffers that adds the concept of faces. (Somthing
like Blender's mesh objects.) There have also been some discussions over
particle engines, and these can be defined in terms of emitter faces; so some
other kind of mesh abstraction might be usefull here.
This is the result of running a number of sed and perl scripts over the code to
do 90% of the work in converting from 16.16 fixed to single precision floating
point.
Note: A pristine cogl-fixed.c has been maintained as a standalone utility API
so that applications may still take advantage of fixed point if they
desire for certain optimisations where lower precision may be acceptable.
Note: no API changes were made in Clutter, only in Cogl.
Overview of changes:
- Within clutter/* all usage of the COGL_FIXED_ macros have been changed to use
the CLUTTER_FIXED_ macros.
- Within cogl/* all usage of the COGL_FIXED_ macros have been completly stripped
and expanded into code that works with single precision floats instead.
- Uses of cogl_fixed_* have been replaced with single precision math.h
alternatives.
- Uses of COGL_ANGLE_* and cogl_angle_* have been replaced so we use a float for
angles and math.h replacements.
The GLES 2 wrapper needs to set up some state before each
draw. Previously this was acheived by wrapping glDrawArrays. Since the
multiple-texture-rectangle branch merge, glDrawElements is used
instead so we also need a wrapper for that.
It was also directly calling glBindTexture. GLES 2 uses a wrapper for
this function so that it can cope with GL_ALPHA format textures. The
format of the current texture needs to be stored as well as the target
and object number for this to work.
test-cogl-material now runs on GLES 1 using the PVR GLES1 SDK (though since
only 2 texture units are supported the third rotating light map doesn't show)
Note: It currently doesn't build for GLES 2.0
Multitexturing allows blending multiple layers of texture data when texturing
some geometry. A common use is for pre-baked light maps which can give nice
lighting effects relativly cheaply. Another is for dot-3 bump mapping, and
another is applying alpha channel masks.
The dot-3 bump mapping would be really nice one day, but currently cogl doesn't
support lighting so that's not dealt with in this patch.
notable limitations:
- It can only texture rectangles a.t.m - and like cogl_texture_rectangle there
is no support for rotated texturing.
- Sliced textures are not supported. I think I've figured out how to handle
layers with different slice sizes at least for rectangular geometry, but I'm
not sure how complex it becomes once rotations are possible and texturing
arbitrary cogl_polygons.
- Except for this new API, cogl still doesn't know about more than one texture
unit, and so has no way of caching any enables related to other units. So that
things don't break it's currently necessary to disable anything to do with
additional units as soon as we are done with them which isn't ideal.
- No clutter API yet.
* clutter/cogl/cogl-path.h:
* clutter/cogl/common/cogl-primitives.c:
* clutter/cogl/common/cogl-primitives.h:
* clutter/cogl/gl/cogl-primitives.c:
* clutter/cogl/gles/cogl-primitives.c: Changed the semantics of
cogl_path_move_to. Previously this always started a new path but
now it instead starts a new disjoint sub path. The path isn't
cleared until you call either cogl_path_stroke, cogl_path_fill or
cogl_path_new. There are also cogl_path_stroke_preserve and
cogl_path_fill_preserve functions.
* clutter/cogl/gl/cogl-context.c:
* clutter/cogl/gl/cogl-context.h:
* clutter/cogl/gles/cogl-context.c:
* clutter/cogl/gles/cogl-context.h: Convert the path nodes array
to a GArray.
* clutter/cogl/gl/cogl-texture.c:
* clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure
* clutter/cogl/common/cogl-clip-stack.c:
* clutter/cogl/common/cogl-clip-stack.h: Simplified the clip
stack code quite a bit to make it more maintainable. Previously
whenever you added a new clip it would go through a separate route
to immediately intersect with the current clip and when you
removed it again it would immediately rebuild the entire clip. Now
when you add or remove a clip it doesn't do anything immediately
but just sets a dirty flag instead.
* clutter/cogl/gl/cogl.c:
* clutter/cogl/gles/cogl.c: Taken away the code to intersect
stencil clips when there is exactly one stencil bit. It won't work
with path clips and I don't know of any platform that doesn't have
eight or zero stencil bits. It needs at least three bits to
intersect a path with an existing clip. cogl_features_init now
just decides you don't have a stencil buffer at all if you have
less than three bits.
* clutter/cogl/cogl.h.in: New functions and documentation.
* tests/interactive/test-clip.c: Replaced with a different test
that lets you add and remove clips. The three different mouse
buttons add clips in different shapes. This makes it easier to
test multiple levels of clipping.
* tests/interactive/test-cogl-primitives.c: Use
cogl_path_stroke_preserve when using the same path again.
* doc/reference/cogl/cogl-sections.txt: Document the new
functions.
differences and improve maintainability.
* clutter/cogl/gl/cogl-context.h:
Adds a CoglTextureGLVertex typedef + texture_vertices and
texture_vertices_size members to CoglContext for using vertex arrays
like GLES does
* clutter/cogl/gl/cogl-context.c:
Initializes texture_vertices + texture_vertices_size members
* clutter/cogl/gl/cogl-internal.h:
Adds COGL_ENABLE_COLOR_ARRAY
* clutter/cogl/gl/cogl.c:
Add COGL_ENABLE_COLOR_ARRAY support to cogl_enable
* clutter/cogl/gles/cogl-context.h:
Change the CoglTextureGLVertex to use GLfloat for the position
and texture coord attributes and GLubyte for the color.
* clutter/cogl/gles/cogl-texture-private.h:
Adds a wrap_mode member like GL has.
* clutter/cogl/gl/cogl-texture.c
* clutter/cogl/gles/cogl-texture.c:
Improves the comparability of the files, such that the remaining
differences, better reflect the fundamental differences needed
between GL and GLES. Notably GL no longer uses glBegin/glEnd for
submitting vertices, it uses vertex arrays like GLES and this gives
a small but measurable fps improvement for test-text.
* clutter/cogl/cogl-mesh.h
* clutter/cogl/cogl-types.h
* clutter/cogl/cogl.h.in
* clutter/cogl/common/Makefile.am
* clutter/cogl/common/cogl-mesh-private.h
* clutter/cogl/common/cogl-mesh.c
* clutter/cogl/gl/cogl-context.c
* clutter/cogl/gl/cogl-context.h
* clutter/cogl/gl/cogl-defines.h.in
* clutter/cogl/gl/cogl.c
* clutter/cogl/gles/cogl-context.c
* clutter/cogl/gles/cogl-context.h
* doc/reference/cogl/cogl-docs.sgml
* doc/reference/cogl/cogl-sections.txt:
The Mesh API provides a means for submitting an extensible number of
per vertex attributes to OpenGL in a way that doesn't require format
conversions and so that the data can be mapped into the GPU (in vertex
buffer objects) for - hopefully - fast re-use.
There are a number of things we can potentially use this API for, but
right now this just provides a foundation to build on. Please read
the extensive list of TODO items in cogl-mesh.c for examples.
Please refer to the cogl-mesh section in the reference manual for
documentation of the API.
* tests/conform/Makefile.am
* tests/conform/test-conform-main.c
* tests/conform/test-mesh-contiguous.c
* tests/conform/test-mesh-interleved.c
* tests/conform/test-mesh-mutability.c:
Privides basic coverage testing for the mesh API.
Bug 1231 - Build fails in gles flavour in revision 3442
* clutter/cogl/gles/cogl-context.h: Fix remaining use of
ClutterFixed over CoglFixed. (Michael Boccara)
* clutter/cogl/gles/cogl-fbo.c: Copy the code from gl/cogl-fbo but
use the API calls directly instead of loading an extension because
it is part of the core in GLES 2.
* clutter/cogl/gles/cogl.c (_cogl_features_init): Report
COGL_FEATURE_OFFSCREEN.
* clutter/cogl/gles/cogl-fbo.h (CoglFbo): Add gl_stencil_handle.
* clutter/cogl/gles/cogl-context.h (CoglContext): Add
viewport_store
* tests/test-fbo.c (make_shader): Conditionally use the GLES 2
names of the shader variables
* clutter/cogl/gl/cogl-texture.c (cogl_texture_polygon)
(_cogl_texture_quad_sw, _cogl_texture_quad_hw):
* clutter/cogl/gles/cogl-texture.c (cogl_texture_polygon)
(_cogl_texture_quad_sw, _cogl_texture_quad_hw): Enable backface
culling in GL if it is requested.
* clutter/cogl/gles/cogl-texture.c (_cogl_texture_quad_sw)
(_cogl_texture_quad_hw):
* clutter/cogl/gl/cogl-texture.c (_cogl_texture_quad_sw)
(_cogl_texture_quad_hw): Reorder the
vertices so that they are counter-clockwise.
* clutter/cogl/gles/cogl-context.h (CoglContext):
* clutter/cogl/gl/cogl-context.h (CoglContext): Added a flag to
store whether backface culling is currently enabled.
* clutter/cogl/gles/cogl.c (cogl_enable_backface_culling):
* clutter/cogl/gl/cogl.c (cogl_enable_backface_culling): New
function
* doc/reference/cogl/cogl-sections.txt: Add
cogl_enable_backface_culling
* clutter/cogl/common/cogl-clip-stack.h:
* clutter/cogl/common/cogl-clip-stack.c: Added functions to
maintain a stack of clipping rectangles.
* clutter/cogl/gles/cogl.c:
* clutter/cogl/gl/cogl.c: The cogl_clip_set and unset functions
have moved into cogl-clip-stack.c which calls back to cogl.c to
set the actual rectangles. Multiple clip rectangles are combined
by merging the stencil buffers.
* clutter/cogl/gles/cogl-primitives.c (_cogl_path_fill_nodes):
* clutter/cogl/gl/cogl-primitives.c (_cogl_path_fill_nodes): Merge
the stencil buffer with the contents of the clipping stack after
drawing the path.
* clutter/cogl/gles/cogl-context.h (CoglContext):
* clutter/cogl/gl/cogl-context.h (CoglContext): Store the number
of available stencil bits.
* clutter/cogl/common/Makefile.am
(libclutter_cogl_common_la_SOURCES): Added cogl-clip-stack.c
* clutter/cogl/gles/cogl.c:
* clutter/cogl/gl/cogl.c: The clip planes are now set using the
inverse projection matrix as the modelview matrix so that they can
be specified in screen coordinates.
* clutter/cogl/gles/cogl-context.h (CoglContext):
* clutter/cogl/gl/cogl-context.h (CoglContext): Added a member to
cache the inverse projection matrix
* clutter/clutter-fixed.h: Added a constant for converting from
radians to degrees.
* clutter/clutter-fixed.c (clutter_atani, clutter_atan2i): Added
fixed-point versions of atan and atan2.
* tests/test-clip.c: Added a test for clipping with various
rotations and depths.
* tests/Makefile.am (noinst_PROGRAMS): Added test-clip
now stored in a separate struct so they can be stored for
application program objects as well.
* clutter/cogl/gles/cogl.c: Moved stub shader functions into
separate files.
(_cogl_features_init): Report support for the shaders feature on
GLES 2
* clutter/cogl/gles/cogl-shader.h:
* clutter/cogl/gles/cogl-shader.c:
* clutter/cogl/gles/cogl-program.h:
* clutter/cogl/gles/cogl-program.c: Separate files to handle
shaders on programs on GLES. If version 1.1 is being used then the
stub functions which all fail are still used.
* clutter/cogl/gles/cogl-gles2-wrapper.c
(cogl_gles2_wrapper_init, cogl_gles2_wrapper_bind_attributes),
(cogl_gles2_wrapper_get_uniforms): Move the uniforms and attribute
bindings into a separate function so they can be used to bind on
application shaders as well.
(cogl_gles2_wrapper_update_matrix): Now takes a parameter and is
no longer static so that it can be used to update all of the
matrices when a new shader is bound.
* clutter/cogl/gles/cogl-defines.h.in: Use GL_COMPILE_STATUS for
CGL_OBJECT_COMPILE_STATUS if the latter isn't available (for
example on GLES 2).
* clutter/cogl/gles/cogl-context.h (CoglContext): Added handle
arrays for programs and shaders.
* clutter/cogl/gles/cogl-context.c (cogl_create_context)
(cogl_destroy_context): Initialize and destroy program and shader
handle array.
* clutter/cogl/gles/Makefile.am (libclutter_cogl_la_SOURCES): Add
cogl-{shader,program}.{c,h}
* clutter/eglx/clutter-stage-egl.h:
* clutter/eglx/clutter-egl-headers.h:
* clutter/eglx/clutter-backend-egl.h:
* clutter/eglx/Makefile.am: Include the GLES and EGL headers via
clutter-egl-headers.h so that the right version can be used
depending on whether the GLES 2 wrapper is being used.
* configure.ac: Added an automake conditional for whether the GLES
2 wrapper should be used.
* clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize):
Remove the call to glGetIntegerv to get the max texture size. It
was being called before the GL context was bound so it didn't work
anyway and it was causing trouble for the GLES 2 simulator.
* clutter/cogl/gles/stringify.sh: Shell script to convert the
shaders into a C string.
* clutter/cogl/gles/cogl-gles2-wrapper.h:
* clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the
missing GL functions in GLES 2.
* clutter/cogl/gles/cogl-fixed-fragment-shader.glsl:
* clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for
GLES 2
* clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@
macro instead of always using the GLES 1 header.
* clutter/cogl/gles/cogl-context.h (CoglContext): Include a field
for the state of the GLES 2 wrapper.
* clutter/cogl/gles/cogl-texture.c:
* clutter/cogl/gles/cogl-primitives.c:
* clutter/cogl/gles/cogl.c: Use wrapped versions of the GL
functions where neccessary.
* clutter/cogl/gles/Makefile.am: Add sources for the GLES 2
wrapper and an extra build step to put the GLSL files into a C
string whenever the files change.
cogl_blend_func caches blending setup much like cogl_enable
does with the enable flags. This separates blending factors
setup from the enable/disable operation in preparation of
the texture image retrieval fix for alpha channel on GLES.
(cogl_enable:) Does not modify blending factors anymore.
* clutter/cogl/gl(es)/cogl-context.h: CoglContext holds two
new variables to cache blending src and dst factors.
* clutter/cogl/gl(es)/cogl-context.c:
(cogl_create_context:) Initialize blending factors.
* clutter/cogl/gles/cogl-texture.c:
(cogl_texture_download_from_gl:) Set blending factors to
CGL_ONE, CGL_ZERO which fixes the slighlty improper behavior
where source colour was actually multiplied with its alpha
value in the result (not noticable on current tests).