When privacy screen is changed and this happens on explicit user request
(that is not a setting change) we should notify about this via an OSD.
To perform this, we keep track of the reason that lead to a privacy
screen change, and when we record it we try to notify the user about.
When the hardware has not an explicit hotkey signal but we record a
change we must still fallback to this case.
Fixes: #2105
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1952>
Privacy screen events on connector are handled as notification events
that won't cause any monitors reconfiguration but will emit monitors
changed on DBus, so that the new value can be fetched.
We monitor the hardware state so that we can also handle the case of
devices with hw-switchers only.
In case a software state is available it means we can also support
changing the state, and if so expose the state as unlocked.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1952>
In some cases mutter is started in the user scope from a TTY (for
example using toolbox). Using sd_pid_get_session fails because it's not
in the session scope so it falls back to the primary session
(sd_uid_get_display). We want to start mutter on the TTY we started
mutter on however. Instead of relying on the scope to figure out the
correct session we first look at $XDG_SESSION_ID which is set by
systemd_pam.so.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2254>
At first glance the `goto` looks like a loop, or potentially an infinite
loop. It's not a loop because the mode has changed at that point to
`META_SHARED_FRAMEBUFFER_COPY_MODE_PRIMARY`. But we can make it more
obvious and avoid the need for a goto.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2240>
When we test, we might not have a systemd session to rely on, and this
may cause some API we depend on to get various session related data to
not work properly. Avoid this issue by passing fallback values for these
when we're running in test mode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
There will be another mode added later, 'test'; prepare for this by
changing the existing "mode" boolean ('headless') to a mode, which is
either 'default' or 'headless'. Checking the is_headless variable is
changed to using the function is_headless(), except for one place, being
VT switching, which in preparation is only allowed on the 'default'
mode. Other places where it makes sense, the conditions are changed to
switch statements.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
There was a sanity check that complained if there was still a "next
framebuffer" when disposing an onscreen. This is correct to complain
about under normal operation, as we always wait until receiving the page
flip callback before cleaning up the onscreen and their state.
However, when there are many hotplugs occurring, we might end up with
race conditions when the above sanity check is not valid: when we have
more than one monitor active, paint 1 one of them, but receive a hotplug
event before we paint the other(s), we will discard the already painted
onscreen before really issuing a page flip.
In this situation, we will have the "next framebuffer", but having that
is not a bug, it's a race condition, thus to not leak in this situation,
make sure to clean up the next framebuffer here too.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2081
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2225>
If there are any pending updates, for example if we painted one of
multiple monitors but without having posted the update due to waiting
for another monitor to be painted, but before we paint all of them and
post the update, another hotplug event happens, we'd have stale pending
KMS update. When that update eventually would be processed, we'd try to
apply out-of-date updates which may contain freed memory.
Fix this by discarding any update when we're rebuilding the views. We
can be sure not to need any of the old updates since we're rebuilding
the whole content anyway.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1928
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2216>
This significantly increases the chance of a fullscreen surface buffer
being scanned out instead of being painted via composition. This is
assuming the client supports the DMA buffer feedback Wayland protocol.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2146>
This API can be used to construct a MetaKmsUpdate with plane assignments
that in isolation will be tested against the current KMS state. How it
is tested depends on the KMS implementation; in the simple / legacy KMS
backend, the tests are identical to the current scanout requirements
(dimension, stride, format, modifiers, all must match), and with atomic
KMS, it uses the TEST_ONLY on a real constructed atomic mode setting
commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2146>
Refresh rates >60Hz become ever more common. In order to allow users
to keep hight refresh rates when not running at a natively advertized
resolution, add common refresh rates to our fallback modes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2189>
Right now we often add a duplicate fallback mode that's almost
identical to the native mode. This adds unnecessary clutter to
UIs, thus filter out such modes.
In order to keep the code small, use `MetaCrtcModeInfo` directly
instead of recalculating the values. And to keep consistency, do
the same in the loop above.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2189>
An incorrect assumption that after mode set there would be no pending
page flips was made. This meant that if there was a mode set, followed
by a page flip, if that page flip was for a CRTC on a now unused GPU,
we'd crash due to the renderer GPU data having already been freed. This
commit avoids that by keeping it alive as long as the page flips are
still in the air. It fixes crashes with backtraces such as
0) meta_render_device_get_egl_display (render_device=0x0)
at ../src/backends/native/meta-render-device.c:320
1) secondary_gpu_state_free (secondary_gpu_state=0x1c8cc30)
at ../src/backends/native/meta-onscreen-native.c:560
2) meta_onscreen_native_dispose (object=0x1cb65e0)
at ../src/backends/native/meta-onscreen-native.c:2168
3) g_object_unref (_object=<optimized out>)
at ../gobject/gobject.c:3540
4) g_object_unref (_object=0x1cb65e0)
at ../gobject/gobject.c:3470
5) clutter_stage_view_finalize (object=0x1cbb450)
at ../clutter/clutter/clutter-stage-view.c:1412
6) g_object_unref (_object=<optimized out>)
at ../gobject/gobject.c:3578
7) g_object_unref (_object=0x1cbb450)
at ../gobject/gobject.c:3470
8) meta_kms_page_flip_closure_free (closure=0x1d47e60)
at ../src/backends/native/meta-kms-page-flip.c:76
9) g_list_foreach (list=<optimized out>, func=0x7fb3ada67111 <meta_kms_page_flip_closure_free>, user_data=0x0)
at ../glib/glist.c:1090
10) g_list_free_full (list=0x1cb4d20 = {...}, free_func=<optimized out>)
at ../glib/glist.c:244
11) meta_kms_page_flip_data_unref (page_flip_data=0x1c65510)
at ../src/backends/native/meta-kms-page-flip.c:109
12) meta_kms_callback_data_free (callback_data=0x227ebf0)
at ../src/backends/native/meta-kms.c:372
13) flush_callbacks (kms=0x18e2630)
at ../src/backends/native/meta-kms.c:391
14) callback_idle (user_data=0x18e2630)
at ../src/backends/native/meta-kms.c
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2147>
This ensures we don't have any left over cursor GPU buffers (via
gbm_bo's) after destroying the corresponding gbm_device (owned by
MetaRenderDevice).
Fixes crashes with backtraces such as
1) meta_drm_buffer_gbm_finalize at ../src/backends/native/meta-drm-buffer-gbm.c:450
4) invalidate_cursor_gpu_state at ../src/backends/native/meta-cursor-renderer-native.c:1167
9) update_cursor_sprite_texture at ../src/wayland/meta-wayland-cursor-surface.c:70
10) meta_wayland_surface_role_apply_state at ../src/wayland/meta-wayland-surface.c:1869
11) meta_wayland_surface_apply_state at ../src/wayland/meta-wayland-surface.c:832
12) meta_wayland_surface_commit at ../src/wayland/meta-wayland-surface.c:993
13) wl_surface_commit at ../src/wayland/meta-wayland-surface.c:1158
14) ffi_call_unix64 at ../src/x86/unix64.S:76
15) ffi_call at ../src/x86/ffi64.c:525
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2147>
The GBM support in the NVIDIA driver is fairly new, and to make it
easier to identify whether a problem encountered is related to using GBM
instead of EGLStreams, add a debug environment variable to force using
EGLStream instead of GBM.
To force using EGLStream instead of GBM, use
MUTTER_DEBUG_FORCE_EGL_STREAM=1
Related: https://gitlab.gnome.org/GNOME/mutter/-/issues/2045
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2132>
Let the meta_cursor_sprite_realize() function return a boolean value
telling whether there was an actual change in the sprite cursor. E.g.
the surface/icon for it changed in between.
This is used in the native backend to avoid converting/uploading again
the cursor surface.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1915>
MetaBackend can now show whether it is in headless mode or not
using a vfunc is_headless.
Fallback of is_headless returns FALSE.
MetaBackendNative implements is_headless returning its
is_headless property.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2130>
The cursor renderer shouldn't assume all the CRTCs of a logical are KMS
CRTC's, as we'll end up checking hardware capabilities for CRTC's of
virtual monitors as well, when they were created to not embed the cursor
image directly in the framebuffer.
Instead, use the newly introduced API for checking CRTC cursor
capabilities. This fixes a crash with the following backtrace:
0) get_plane_with_type_for at ../src/backends/native/meta-kms-device.c:150
1) meta_kms_device_get_cursor_plane_for at ../src/backends/native/meta-kms-device.c:173
2) has_cursor_plane at ../src/backends/native/meta-cursor-renderer-native.c:678
3) foreach_crtc at ../src/backends/meta-logical-monitor.c:247
4) meta_monitor_mode_foreach_crtc at ../src/backends/meta-monitor.c:1920
5) meta_logical_monitor_foreach_crtc at ../src/backends/meta-logical-monitor.c:274
6) crtcs_has_cursor_planes at ../src/backends/native/meta-cursor-renderer-native.c:718
7) should_have_hw_cursor at ../src/backends/native/meta-cursor-renderer-native.c:881
8) meta_cursor_renderer_native_update_cursor at ../src/backends/native/meta-cursor-renderer-native.c:1085
9) meta_cursor_renderer_update_cursor at ../src/backends/meta-cursor-renderer.c:411
Related: https://bugzilla.redhat.com/show_bug.cgi?id=2000183
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1991>
On a KMS backed CRTC, hardware cursor are supported when there are
cursor planes to assign them to. Note that when using legacy mode
setting, fake cursor planes are added when adequate.
On virtual CRTCs, used with virtual monitors, the equivalent of hardware
cursor are always supported, as they are sent using embedded PipeWire
stream metadata.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1991>
It was dropping to zero after the first frame because it hadn't been
incremented high enough. So the second frame would crash with:
```
#0 g_type_check_instance_cast
#1 META_DRM_BUFFER
#2 copy_shared_framebuffer_cpu
```
That's the CPU-copy path (fallback-fallback) that probably no one is using
but it does work after this fix. Exactly the same issue as was fixed
in `copy_shared_framebuffer_primary_gpu` by 36352f44f9.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2104>
If some connectors disappeared, but the rest didn't change, we missed
actually removing the ones that disappeared, as we incorrectly assumed
nothing changed. Fix this by only assuming nothing changed if 1) we
didn't add any connector, and 2) we have the same amount of connectors
as before the hotplug event. The connector comparison checking makes
sure we report changes if anything of the still available connectors
changed.
Fixes: a8d11161b6
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2007
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2097>
When a docking station is disconnected, a few previously existing DRM
connectors may now be gone. When this happens, getting them via the
libdrm API results in NULL pointers returning, and we need to handle
this gracefully by making sure the connector state is properly updated.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2097>
Systems with AMD GPUs do not take advantage of Mutter's zero-copy path
when driving DisplayLink screens. This is due to a very slow CPU access
to the zero-copy texture. Instead they fall back on primary GPU doing a
copy of the texture for fast CPU access. This commit accelerates texture
copy by working through damage regions only.
Tests on a 4K screen with windowed applications show significant
reduction of GPU utilisation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2033>
When we use gbm together with the NVIDIA driver, we want the EGL/Vulkan
clients to do the same, instead of using the EGLStream paths. To achieve
that, make sure to only initialize the EGLStream controller when we
didn't end up using gbm as the renderer backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2052>
This switches the order of what renderer mode is tried first, so that
the gbm renderer mode is preferred on an NVIDIA driver where it is
supported.
We fall back to still try the EGLDevice renderer mode if the created gbm
renderer is not hardware accelerated.
The last fallback is still to use the gbm renderer, even if it is not
hardware accelerated, as this is needed when hardware acceleration isn't
available at all. The original reason for the old order was due to the
fact that a gbm renderer without hardware acceleration would succeed
even on NVIDIA driver that didn't support gbm.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2051>
This replaces functionality that MetaRenderDevice and friends has
learned, e.g. buffer allocation, EGLDisplay creation, with the usage of
those helper objects. The main objective is to shrink
meta-renderer-native.c and by extension meta-onscreen-native.c, moving
its functionality into more isolated objects.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
All render devices that have a device file backing them might be able to
allocate dumb buffers, so add a helper for doing that. Will indirectly
result in an error up front on a surfaceless render device due to lack
of a device file.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
It might not be needed by the user of the buffer, so don't always
require it up front. Instead make sure that any user that needs it first
calls "meta_drm_buffer_ensure_fb_id()" to create the ID.
Only the plain gbm implementation creates the ID lazilly, the other
still does it on construction due to the objects used to create them
only existing during construction.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
Mostly calls into gbm_bo_* API, or something somewhat similar when on
dumb buffers. Added API are:
* get offset for plane
* get bpp (bits per pixel)
* get modifier
This will allow users of MetaDrmBuffer to avoid having to "extract" the
gbm_bo to get these metadata.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
The purpose of MetaRenderDevice is to contain the logics related to a
render device; i.e. e.g. a gbm_device, or an EGLDevice. It's meant to
help abstract away unrelated details from where it's eventually used,
which will be by MetaRendererNative and the MetaOnscreenNative
instances.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
This changes the setup phase of clutter to not be result of calling an
init function that sets up a few global singletons, via global singleton
setup vfuncs.
The way it worked was that mutter first did some initial setup
(connecting to the X11 server), then set a "custom backend" setup vfunc
global, before calling clutter_init().
During the clutter_init() call, the context and backend was setup by
calling the global singleton getters, which implicitly created the
backend and context on-demand.
This has now changed to mutter explicitly creating a `ClutterContext`
(which is actually a `ClutterMainContext`, but with the name shortened to
be consistent with `CoglContext` and `MetaContext`), calling it with a
backend constructor vfunc and user data pointer.
This function now explicitly creates the backend, without having to go
via the previously set global vfunc.
This changes the behavior of some "get_default()" like functions, which
will now fail if called after mutter has shut down, as when it does so,
it now destroys the backends and contexts, not only its own, but the
clutter ones too.
The "ownership" of the clutter backend is also moved to
`ClutterContext`, and MetaBackend is changed to fetch it via the clutter
context.
This also removed the unused option parsing that existed in clutter.
In some places, NULL checks for fetching the clutter context, or
backend, and fetching the cogl context from the clutter backend, had to
be added.
The reason for this is that some code that handles EGL contexts attempts
to restore the cogl EGL context tracking so that the right EGL context
is used by cogl the next time. This makes no sense to do before Cogl and
Clutter are even initialized, which was the case. It wasn't noticed
because the relevant singletons were initialized on demand via their
"getters".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
When the native backend is paused we still process the udev events
even though this isn't needed and may just cause unneeded events to be
triggered afterwards.
Since we'll resume with full changes on such event, we can just block
the signal hander when paused and restore it afterwards.
As per this we can cleanup also a bit the device adding signal handling
given that now we don't have to disconnect/reconnect it again.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Resume happens after we may have received various events that we've
ignored, so at this point we need to just emit an hotplug event like if
everything changed so that user settings may be re-applied.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
On hotplug events we may get informations about what CRTC or connector
changed a property (and the property itself), so in such case let's just
ignore the changes to the non-affected CRTCs/connectors, and let's read
only the affected one
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
On hotplug events we may receive a "CRTC" or "CONNECTOR" property that
indicates which crtc/connector property ID has changed.
In such case, instead of update data for all the devices, only update the
device containing the relative connector.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Hotplug events may contain CRTC or CONNECTOR ids to notify a property
change to just one owner, so we need to find its parent device.
Also we may want to update properties directly without having to go through
all the devices, so expose a simple way to find them.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
In case we have no devices, after a KMS update (both because they've
all have been removed or because there were none), we may need to behave
differently compared to the case in which nothing changed, so add a more
specific KMS update change type
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
If only gamma changed on drm CRTC's we don't have to rebuild the whole
monitors, nor to inform the backed about, the only consumer could be the
DBus API, and so we still emit a signal, but nothing else is needed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Since we cache already all the KMS parameters we care about let's check at
each device update if anything has really changed and only in such case
emit a resources-changed signal.
In this way we can also filter out the DRM parameters that when changed
don't require a full monitors rebuild.
Examples are the gamma settings or the privacy screen parameters, that
emits an udev "hotplug" event when changed, but we want to register those
only when we handle the changed property.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
This commit adds support to atomic KMS backend for optional plane property
prop_fb_damage_clips. Some drivers (e.g. EVDI) take advantage of this
property and process only updated regions of the screen instead of
processing the full frame. This can save system resources.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1879>
Scanout doesn't go through the usual path of compositing and doing
eglSwapBuffers, therefore it doesn't hit the timestamp query placed in
that path. Instead, get the timings by binding the scanout buffer to an
FBO and doing a timestamp query on the FBO.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1762>
In order to make it possible to e.g. unload an unused DRM device, we
need to make sure that we don't keep the file descriptor open if we
don't need it; otherwise we block anyone from unloading the
corresponding module.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
The DRM buffers aren't really tied to mode setting, so they shouldn't
need to have an associated mode setting device. Now that we have a
device file level object that can fill this role, port over
MetaDrmBuffer and friends away from MetaKmsDevice to MetaDeviceFile.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Keep a private MetaDeviceFile instance for the GPU's managed by the
renderer. This is a step towards decoupling rendering from mode setting,
as well as on-demand holding of device file descriptors.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Tags are meant to make it possible for a device file opener to tag a
file if it has affected the state the file descriptor is in; e.g. if it
has enabled a DRM capability.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Handle open() failing due to being interrupted by trying again until it
either succeeds, or fails due to some other error. This was an error
handling path taken when opening sysfs files; do the same here to not
potentially regress once we open sysfs files with the device pool.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
It's only when we take/release from/to logind we need these two
integers, so only retrieve them when that's done. Making this change
makes it possible to open devices that don't have these parameters.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
This changes the way the KMS backends load; if we're headless, we always
use the dummy one and fail otherwise; in other cases, we first try the
atomic backend, and if that fails, fall back on the simple one.
The aim for this is to have the impl device open and close the device
when needed, using the device pool directly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
This practically does the same thing as part of MetaLauncher, except
with added thread safety and caching. For example, opening the same file
a second time will return the same MetaDeviceFile, and only once all
acquired MetaDeviceFile's are released, will the file descriptor be
closed and control of the device released.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
ClutterInputDevice's get_group_n_modes() vfunc is meant to return
-1 for groups that are out of the known range, not within. Fix the
early return condition, and let the native backend return correctly
the number of modes for the given group.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1920>
When drmModePageFlip() or drmModeAtomicCommit() unexpectedly failed (e.g.
ENOSPC, which has been seen in the wild), this failure was not handled
very gracefully. The page flip listener for the scanout was left in the
MetaKmsUpdate, meaning when the primary plane composition was later page
flipped, two page flip listeners were added, one for the primary plane,
and one for the scanout. This caused the 'page-flipped' event to be
handled twice, the second time being fatal.
Handle this by making 'no-discard' listener flag be somewhat reversed,
and say 'drop-on-error', and then drop all 'drop-on-error' listeners
when a MetaKmsUpdate failed to be processed.
Also for a "preserve" flagged update, don't ever trigger "discard"
callbacks just yet, as preserved updates are used again for the primary
plane composition, in order to not miss e.g. CRTC gamma updates, or
cursor plane updates, which were added separately.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1809
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1910>
There is an udev rule marking whether a device should be ignored by
mutter or not, but it was only respected on hotplug events not on init,
partly defeating its purpose. Fix this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1892>
A view is only a 'CoglOnscreen' if it ends up on a CRTC, thus needs a
mode. Other views are for virtual monitors, and require no mode setting,
so exclude them from the pending mode set list.
This avoids a dead lock when we'll be waiting indefinitely for mode
setting on a virtual monitor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1891>
This object takes over the functionality of meta-idle-monitor-dbus.c,
meta-idle-monitor.c and meta-backend.c, all related to higher level
management of idle watches etc.
The idle D-Bus API is changed to be initialized by the backend instead
of MetaDisplay, as it's more of a backend functionality than what
MetaDisplay usually deals with.
It also takes over the work of implementing "core" idle monitors. The
singleton API is replaced with thin wrapper functions on the backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1859>
Wayland support is not really a "backend" thing, it just lacked a better
place to store its instance pointer. Eventually we'll have a better
place, but prepare for that by initializing it together with the more
similar subsystems.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1833>
The first phase happens early, which discards pending page flips,
meaning the references held by those page flip closures are released.
The second phase happens late, after other units depending on the KMS
abstraction, have been cleaned up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
We already swapped the front buffer, and even if it didn't get
presented, we should still swap our representation of the state, to not
get into a confused buffer tracking state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
Virtual Kernel Mode Setting (vkms) is a virtual /dev/dri/card* device
not backed by any actual hardware. It's intended for testing purposes,
e.g. to run tests suites with a reproducable setup, or in continuous
integration pipelines.
Currently mutter don't have any tests that can run on top of vkms, but
will eventually get that. To prepare for the ability to do that, and
having said kernel module loaded without causing wierd issues with any
active session, add an udev rule that tells mutter to ignore any vkms
device.
Otherwise, when vkms is loaded, mutter would detect it, assume it's a
regular monitor, configure it as such, thus add a region of the stage
that ends up nowhere, which isn't very helpful. It might also conflict
with running actual tests that need to interact with vkms if the active
session has taken control of it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1740>
With atomic mode setting, commits don't work when CRTCs aren't enabled,
which they aren't when we're power saving. This means the gamma state
fails to being update. To fix night light and for whatever other reason
gamma ramps was changed during power saving by marking the CRTC gamma
state as invalid when leaving power saving, as well as when resuming.
This means that the next frame will append the CRTC gamma state to the
KMS commit.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1755
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1835>
This GSource is not being properly unref nor the variable holding it
cleared. This on one hand leaks the GSource memory, on the other hand
may trigger warnings in keyboard_repeat() as the source may be
(reentrantly) cleared, yet we don't exit early as
seat_impl->repeat_source is never NULL.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1839>
When we set the matrix, we checked the device mapping mode in the main
thread, then passed along the calculated matrix to the input thread for
application. This could however be racy, as the mapping mode is managed
in the input thread. Fix this by sending the unaltered matrix, having
the input thread checking the mapping mode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1806>
The connector state wasn't properly predicted, as it earlied out if
the connector wasn't part of a mode set connector list.
Instead use the old CRTC to check whether it was used in any mode set,
and whether the connector was part of any new mode set, to predict
whether the connector is inactive or active.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1821>
When a device only had mode sets which turned off monitors, not enabling
anything, there would be no KMS update created and posted, and the
active monitors would remain on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1821>
On hybrid graphics system, the primary path used to transfer the stage
framebuffer onto the dedicated GPU's video memory preparing for scanout,
is using the dedicated GPU to glBlitFramebuffer() the content from the
iGPU texture onto the scanout buffer.
After we have done this, we reset the current EGL context back to the
one managed by cogl. What we failed to do, however, was to reset the
current EGL context when we inhibited the actual page flip due to having
entered power save mode.
When we later started to paint again, Cogl thought the current EGL
context was still the correct one, but in fact it was the one used for
the iGPU -> dGPU blit, causing various EGL surface errors, and as a side
effect, eventually hitting an assert.
Fix this by making sure we reset to the Cogl managed EGL context also
for this case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
Destroying the EGLSurface frees the underlying container structs. When
we call gbm_surface_release_buffer() with a gbm_surface the EGLSurface
was created from, doing that after the EGLSurface was destroyed results
in attempts to access freed memory. Fix this by releasing any buffer
first, followed by destroying the EGLSurface, and lastly, the
gbm_surface.
This was not a problem prior to CoglOnscreen turning into a GObject, as
in that case, the dispose-chain was not setup correctly, and the
EGLSurface destruction was done in the native backend implementation.
This also changes a g_return_if_fail() to a g_warn_if_fail(), as if we
hit the unexpected case, we still need to call up to the parent dispose
vfunc to not cause critical issues.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
It's handled by CoglOnscreenEgl's dispose() implementation. It was
failed to be invoked in the past because the old non-GObject web of
vtables were not setup correctly, meaning the old generic EGL layer of
the CoglOnscreen de-init was never invoked.
When the type inheritence was cleaned up, this mistake was not cleaned
up, so do that now.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
If there was only a single mode, add the common modes to provide options
to select other resolutions than the built in default. This avoids
issues where the connector listed multiple supported modes, but where
the common modes added would exceed the possible bandwidth. We could
probably make an attempt to filter out more modes from the common mode
list to avoid these issues, but it's likely that the driver already
lists suitable modes, meaning there is no point in adding the common
modes.
The common modes were initially added[0] to add modes to connectors with
a single bundled mode, so we shouldn't regress the original bug fix.
[0] https://bugzilla.gnome.org/show_bug.cgi?id=744544
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1232
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1824>