Keeping the Cogl 2.0 API reference in the build is getting far more
troublesome than it's worth.
It's breaking distcheck far too often, and it makes it impossible to
rebuild the build environment from tarballs - which is something that
some distributions (namely: the Debian-based ones, but not limited to
them) do in order to change build scripts using their own rules.
Added 3 examples for the box layout recipe:
1) Simple box layout demonstrating how to set actor properties
2) Trivial menu implementation using box layout
3) Demonstration app which enables tweaking and testing
of layout property interactions
Also inlined example 1 in the solution section and added
more explanatory text in the discussion.
Other frameworks expose the same functionality as "auto-reverse",
probably to match the cassette tape player. It actually makes sense
for Clutter to follow suit.
The test-viewport interactive test is exercising the clip code - a job
better done by the conformance test suite and by the test-clip
interactive test.
The test-project test case was an old test that was barely working after
landing the size allocation API in Clutter 0.8. It has never been fixed,
and it's been of relative use ever since.
The test-offscreen interactive test was a dummy test for the
ClutterStage:offscreen property, which has been deprecated and
not implemented since Clutter 1.0, and never really worked except
briefly in Clutter 0.2 or something.
The stage has a dirty flag to record whenever the viewport and
projection matrices need to be flushed. However after flushing these
the flags were never cleared so it would always redundantly update the
state.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2480
The ARBfp fragend was bypassing generating a shader if the pipeline
contains a user program. However it shouldn't do this if the pipeline
only contains a vertex shader. This was breaking
test-cogl-just-vertex-shader.
Adding an action should allow passing a user data pointer, and have a
notification action that gets called when removing the action. This
allows introspection and language bindings to attach custom data to the
action - for instance, the real callable object that should be invoked.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2479
Previously, ClutterText took keyboard focus on mouse-down, regardless
if it were editable or selectable. Now it checks these properties,
and behaves like other actors if it can't do anything useful with
the focus.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2462
Previously Cogl would only ever use one atlas for textures and if it
reached the maximum texture size then all other new textures would get
their own GL texture. This patch makes it so that we create as many
atlases as needed. This should avoid breaking up some batches and it
will be particularly good if we switch to always using multi-texturing
with a default shader that selects between multiple atlases using a
vertex attribute.
Whenever a new atlas is created it is stored in a GSList on the
context. A weak weference is taken on the atlas using
cogl_object_set_user_data so that it can be removed from the list when
the atlas is destroyed. The atlas textures themselves take a reference
to the atlas and this is the only thing that keeps the atlas
alive. This means that once the atlas becomes empty it will
automatically be destroyed.
All of the COGL_NOTEs pertaining to atlases are now prefixed with the
atlas pointer to make it clearer which atlas is changing.
When determining the maximum number of layers we also need to take
into account GL_MAX_VERTEX_ATTRIBS on GLES2. Cogl needs one vertex
attrib for each texture unit plus two for the position and color.
All of the drawing needed in _cogl_add_path_to_stencil_buffer is done
with the vertex attribute API so there should be no need to flush the
enable flags to enable the vertex array. This was causing problems on
GLES2 where the vertex array isn't available.
The GLES2 wrapper is no longer needed because the shader generation is
done within the GLSL fragend and vertend and any functions that are
different for GLES2 are now guarded by #ifdefs.
Once the GLES2 wrapper is removed then we won't have the GLenums
needed for setting up the layer combine state. This adds Cogl enums
instead which have the same values as the corresponding GLenums. The
enums are:
CoglPipelineCombineFunc
CoglPipelineCombineSource
and
CoglPipelineCombineOp
Once the GLES2 wrapper is removed we won't be able to upload the
matrices with the fixed function API any more. The fixed function API
gives a global state for setting the matrix but if a custom shader
uniform is used for the matrices then the state is per
program. _cogl_matrix_stack_flush_to_gl is called in a few places and
it is assumed the current pipeline doesn't need to be flushed before
it is called. To allow these semantics to continue to work, on GLES2
the matrix flush now just stores a reference to the matrix stack in
the CoglContext. A pre_paint virtual is added to the progend which is
called whenever a pipeline is flushed, even if the same pipeline was
flushed already. This gives the GLSL progend a chance to upload the
matrices to the uniforms. The combined modelview/projection matrix is
only calculated if it is used. The generated programs end up never
using the modelview or projection matrix so it usually only has to
upload the combined matrix. When a matrix stack is flushed a reference
is taked to it by the pipeline progend and the age is stored so that
if the same state is used with the same program again then we don't
need to reupload the uniform.
Sometimes it would be useful if we could efficiently track when a matrix
stack has been modified. For example on GLES2 we have to upload the
modelview as a uniform to our glsl programs but because the modelview
state is part of the framebuffer state it becomes a bit more tricky to
know when to re-sync the value of the uniform with the framebuffer
state. This adds an "age" counter to CoglMatrixStack which is
incremented for any operation that effectively modifies the top of the
stack so now we can save the age of the stack inside the pipeline
whenever we update modelview uniform and later compare that with the
stack to determine if it has changed.
This returns the layer matrix given a pipeline and a layer index. The
API is kept as internal because it directly returns a pointer into the
layer private data to avoid a copy into an out-param. We might also
want to add a public function which does the copy.
When the GLES2 wrapper is removed we can't use the fixed function API
such as glColorPointer to set the builtin attributes. Instead the GLSL
progend now maintains a cache of attribute locations that are queried
with glGetAttribLocation. The code that previously maintained a cache
of the enabled texture coord arrays has been modified to also cache
the enabled vertex attributes under GLES2. The vertex attribute API is
now the only place that is using this cache so it has been moved into
cogl-vertex-attribute.c
Previously when stroking a path it was flushing a pipeline and then
directly calling glDrawArrays to draw the line strip from the path
nodes array. This patch changes it to build a CoglVertexArray and a
series of attributes to paint with instead. The vertex array and
attributes are attached to the CoglPath so it can be reused later. The
old vertex array for filling has been renamed to fill_vbo.
The code to display the source when the show-source debug option is
given has been moved to _cogl_shader_set_source_with_boilerplate so
that it will show both user shaders and generated shaders. It also
shows the code with the full boilerplate. To make it the same for
ARBfp, cogl_shader_compile_real now also dumps user ARBfp shaders.
The GLSL vertend is mostly only useful for GLES2. The fixed function
vertend is kept at higher priority than the GLSL vertend so it is
unlikely to be used in any other circumstances.
Due to Mesa bug 28585 calling glVertexAttrib with attrib location 0
doesn't appear to work. This patch just reorders the vertex and color
attributes in the shader in the hope that Mesa will assign the color
attribute to a different location.
Some builtin attributes such as the matrix uniforms and some varyings
were missing from the boilerplate for GLES2. This also moves the
texture matrix and texture coord attribute declarations to
cogl-shader.c so that they can be dynamically defined depending on the
number of texture coord arrays enabled.
The vertends are intended to flush state that would be represented in
a vertex program. Code to handle the layer matrix, lighting and
point size has now been moved from the common cogl-pipeline-opengl
backend to the fixed vertend.
'progend' is short for 'program backend'. The progend is intended to
operate on combined state from a fragment backend and a vertex
backend. The progend has an 'end' function which is run whenever the
pipeline is flushed and the two pipeline change notification
functions. All of the progends are run whenever the pipeline is
flushed instead of selecting a single one because it is possible that
multiple progends may be in use for example if the vertends and
fragends are different. The GLSL progend will take the shaders
generated by the fragend and vertend and link them into a single
program. The fragend code has been changed to only generate the shader
and not the program. The idea is that pipelines can share fragment
shader objects even if their vertex state is different. The authority
for the progend needs to be the combined authority on the vertend and
fragend state.
This adds two internal functions:
gboolean
_cogl_program_has_fragment_shader (CoglHandle handle);
gboolean
_cogl_program_has_vertex_shader (CoglHandle handle);
They just check whether any of the contained shaders are of that type.
The pipeline function _cogl_pipeline_find_codegen_authority has been
renamed to _cogl_pipeline_find_equivalent_parent and it now takes a
set of flags for the pipeline and layer state that affects the
authority. This is needed so that we can reuse the same code in the
vertend and progends.