The default focus interface uses the button count to determine
whether we should update the pointer focused surface. When releasing
an implicit grab, we need to send the button release events to the
implicitly grabbed surface, so we can't reset the focus surface too
soon. We already explicitly set the focus at the end of implicit
grabs, so counting the buttons after is perfectly fine.
If we send out a configure notify for a window and then have some
other kind of state change, we need to make sure that we continue
to send out that new size, rather than the last size the client
sent us a buffer for.
In particular, a client might give us a 250x250 buffer and then
immediately request fullscreen. We send out a configure for the
monitor size and a state that tells it it's full-screen, but then
it takes focus, and since the client hasn't sent us a buffer for
the new size, we tell it it's fullscreen at 250x250.
Fix this.
If we attach to a MetaWindow that disappears before the idle fires,
we'll notice that we can't associate the window properly again and
try to access data on the MetaWindow struct, which might crash.
Install a weak ref that ties the lifetime of the idle to the lifetime
of the MetaWindow.
It seems every GTK+ app does this for some reason at startup. This
is really unfortunate, since we'll have to create and destroy a new
MetaWindow really quickly.
Scale surfaces based on output scale and the buffer scale set by them.
We pick the scale factor of the monitor there are mostly on.
We only handle native i.e non xwayland / legacy clients yet.
https://bugzilla.gnome.org/show_bug.cgi?id=728902
Advertise the scale factor on the output and transform pointer and damage
events as well as input and opaque regions for clients
that scale up by themselves i.e use set_buffer_scale.
We do not scale any 'legacy' apps yet.
https://bugzilla.gnome.org/show_bug.cgi?id=728902
Ugh. So in the fullscreen case, we need to make sure to specify that
it's a MOVE_ACTION so that we move to the saved position, but we
can't do that in the resizing case since we need to use the resized
rectangle.
The flags are really hurting us here. Perhaps we should make it the
client's responsibility to specify a complete rectangle which we
could resize to; then the weird-o logic would be self-contained in
each front-end.
I'm not convinced this covers all cases, especially when we could have
a dangling weird state pointer, but it fixes our existing two testcases.
Restoring the position in our move_resize_internal implementation
is too late. We need to do it at ack-time, before we hand off the
new position to the constraints code.
For the server-initiated resize case, like unmaximize or some forms
of tiling, we dropped the x/y of the server-assigned rectangle on the
floor, which meant the surface didn't move to where it needed to be in
that case. Now, save it internally, and combine it with the dx/dy passed
in during attaches to figure out where we actually need to be.
Make sure to only use it for when we send out a configure notify. We
should use the passed in rectangle for other scenarios, like a
client-initiated resize.
This fixes incorrect surface placement after unmaximization.
For the server-initiated resize case, like unmaximize or some forms
of tiling, we dropped the x/y of the server-assigned rectangle on the
floor, which meant the surface didn't move to where it needed to be in
that case. Now, save it internally, and combine it with the dx/dy passed
in during attaches to figure out where we actually need to be.
This fixes incorrect surface placement after unmaximization.
Looking at the code paths where is_mouse / is_keyboard are used,
all of them should never be run when dealing with a COMPOSITOR
grab op, since they're filtered out above or the method is just
never run during that time.
It's confusing that COMPOSITOR is in here, and requires us to
be funny with other places in code, so just take it out.
pointer->current needs to always be the surface under the pointer,
even when we have a grab. We do need to make sure we keep the focus
surface the same even when we have a grab, though, so add logic
for that.
In order to correctly fix the issue to make sure we only set the
focused surface to NULL during a grab, but not the current surface,
we need to merge update_current_surface back into repick_for_event
so we have more control over the behavior here.
... not when we do an update.
We only repick when we handle events, not when we update. Perhaps
this is a mistake.
Since update runs before handle_event, this means that when we
drop a grab, update will notice the NULL surface, since we haven't
repicked after the event, and then we'll repick the correct surface.
The end result is that you see a root cursor after a grab ends,
rather than the correct window cursor.
This doesn't fix it, since the current surface becomes NULL when
we start the grab. But it does make the code here more correct when
we fix that bug.
I was talking with other people and they became confused at the
term "double-buffered", since we were also talking about
double-buffering in general, e.g. swapping between two buffers.
Instead, we'll adapt the "pending state" nomenclature that we
already use for the field / variable names.
If we have a focused surface, we need to eat up key events, not
just if we have a non-empty focus resource list. The latter would
happen if we have a focused client but it never called get_keyboard.
The latest Xorg / Xwayland has support for -displayfd being used
in conjunction with an explicit display number. Use that to know
when the X server is ready, rather than UNIX signals, because
they're UNIX signals.
If we're sending out a configure event, we can't immediately move the
window; we need to instead wait to apply the new position when the
client sends a new buffer.
dx/dy should be against the regular window's rect, and need to
be ignored when we're resizing. Instead, we use gravity to anchor
the window's new rectangle when resizing.
Sophisticated clients, like those using ClutterGtk, will have more
than one focused resource per client, as both Clutter and GDK will
ask for a wl_pointer / wl_keyboard. Support this naturally using
the same "hack" as Weston: multiple resource lists, where we move
elements from one to the other.
In order to support multiple pointers for the same client, we're
going to need to kill it.
This will cause crashes for now, but will be fixed by the next
commit.
default_grab_focus tries to add implicit grab semantics where
focus won't take effect if there's a pointer button down. This
is not what we want for popup grabs at all, as it's perfectly
valid to want to drag on a menu while there's a button down.
The idea here is that while we take a WM-side grab, like a compositor
grab or a resizing grab, we need to remove the focus from the Wayland
client.
We make a special exception for CLICKING operations, because these
are really an internal state machine while you're pressing on a button
inside a frame, and in this case, we need to not kill the focus.
Really, it is a special case. When the subsurface is synchronous,
commit changes meaning from being applied immediately to being
queued up for replay later. Handle this explicit special case
with an explicit special case in the code.
This means that in all other paths, we can unconditionally
apply the actor immediately.
Even when it doesn't have a role.
This fixes cursors not quite working right, as they're a "detached"
surface without a role since nobody called set_cursor on them yet.
Instead of using commit_attached_buffer / actor_surface_commit.
We want to kill the return values of these methods because we
really should always be calling them, even if the surface doesn't
have a role.
This is also something that we did upstream. Since we want to
introduce an explicit "xdg_transient" window type for tooltips
and popovers, and since "transient_for" is a confusing dumb
80s term lifted from the ICCCM spec, just rename it.
This was changed upstream a little while ago for C++ compatibility.
It's also the more common term for the operation: you close a window,
you don't delete one. In fact, a delete event might seem like it
would be about resource management instead.
Since we get the ClientMessage after the surface is created, there's
no good way to synchronize the two streams. In this case, what we
need to do is delay the surface commit until after we get the
ClientMessage. Ideally, we'd be using a better surface system overall
where committing the surface didn't depend on what type it is, but
oh well, this is a good short-term hack for now.
This is effectively the same, but since we lose the xserver.xml protocol
in the new XWayland DDX, we have to use SIGUSR1 anyway, so might as well
switch over now.