We'll want to expose popup logic outside of meta-wayland-pointer.c and
one day we'll also probably want to add touch support for popups, so
lets move it to its own file. There are no significant semantical
changes, only refactoring.
https://bugzilla.gnome.org/show_bug.cgi?id=744452
The current ordering updates the clip shape of the composite overlay
window after unredirecting the target window. This has the effect of
forcing X to clear the target window and sending an expose to the
application to repaint - causing an unsightly flash. If we update the
shape first, then unredirect, X restores the background of the root
window (sending no expose events as no one is interested) and the
background is typically NONE for the root window. Then the unredirect
paints the contents of the composite backing pixmap over top without
requiring a round trip and waiting for the client to repaint - thus no
flashing.
Fixes regression from
commit d6282716b2
Author: Jasper St. Pierre <jstpierre@mecheye.net>
Date: Fri Dec 6 17:10:44 2013 -0500
compositor: Simplify the unredirected window management code
Cc: Jasper St. Pierre <jstpierre@mecheye.net>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
https://bugzilla.gnome.org/show_bug.cgi?id=743858
This just exposes the type and the singleton getter necessary to make
it available to introspection. We'll expose more functionality as it
becomes needed.
https://bugzilla.gnome.org/show_bug.cgi?id=743745
We're locked to frame sync anyway, so it doesn't make sense to try to
redraw early. In casual testing, this seems to actually make things
faster, as well.
The commit 97a69cee5a broke the caching of
the surface state when because the frame_callback_list target state was
overwritten after the content had been moved to it.
This commit fixes it by moving the frame list addition after the copy. We
also need to initialize the list since the plain copy put garbage in it.
https://bugzilla.gnome.org/show_bug.cgi?id=743678
When looking for space to place a new window, other non-minimized
windows on the same workspace should be taken into account. However
the current check does not work correctly when the placed window is
located on all workspaces, so handle that case explicitly.
https://bugzilla.gnome.org/show_bug.cgi?id=743217
When running as a dispay server pointer barriers are a server side
feature and requires no client interaction of any sort. This patch
implements pointer barriers that can be used when running as a display
server on the native backend. Running as a display server using the X11
backend is currently not supported.
https://bugzilla.gnome.org/show_bug.cgi?id=706655
For each device that can be mapped (touchscreens, tablets), the output
will be fetched from settings and matched with the currently connected
ones. If a match is found, the device matrix will be found out from the
output configuration and set on the device.
This is also updated both individually for newly connected devices, and
collectively on output configuration changes.
https://bugzilla.gnome.org/show_bug.cgi?id=739397
This goes through modifying XI2 device properties, either common ones (eg.
set on every device) or those specific to the libinput X11 driver. Keyboard
repeat/rate are set through core and XKB APIs.
https://bugzilla.gnome.org/show_bug.cgi?id=739397
This object internally keeps track of the relevant input configuration,
and goes through its vmethods in order to apply the configuration on the
backend-specific devices.
So far, only mouse/touchpad settings are actually attached to GSettings
changes. ::set_matrix(), meant for tablets/touchscreens, is not hooked
yet.
One caveat is that meta_input_settings_create() may return NULL if the
backend does not own the windowing system (wayland nested on X11 being
the one case), and thus device settings can't be changed freely.
https://bugzilla.gnome.org/show_bug.cgi?id=739397
This patch removes the X11 specific code from MetaBarrier and creates an
abstraction layer MetaBarrierImpl. The existing X11 implementation is
moved to a new GObject MetaBarrierImplX11 implementing the abstract
interface MetaBarrierImpl which is instantiated by MetaBarrier when
supported.
While at it, move it to backends/ and properly name the files.
https://bugzilla.gnome.org/show_bug.cgi?id=706655
EDID parsing has been refactored to a common meta_output_parse_edid()
function, which ensures the extracted information is the same on both KMS
and X11 backend, so it can be used consistently on eg. settings values.
https://bugzilla.gnome.org/show_bug.cgi?id=742882
MetaKeyCombo is about the *unresolved* keybinding, which can either be a
"keysym" (<Ctrl>F) or a "keycode" (<Ctrl>0x21). When we resolved the
keysym to a keycode, we stuffed it back in the same MetaKeyCombo, which
confused about what the "keycode" field was for. Thus, we often stomped
on the user's explicit choice if they chose a keycode binding value.
To solve this, create a separate structure, the "devirtualized key combo"
or MetaKeyDevirtCombo, which contains a resolved keycode from the
keysym, and a devirtualized modifier mask. The MetaKeyCombo is now
always a "source" value, and the MetaKeyDevirtCombo is now always what
the user chose.
This also lets us significantly clean up the overlay and ISO key binding
paths.
The reason MetaKeyCombo has a keycode value at all is *not* to store the
devirtualized keycode from the keysym, but instead to allow people that
type in "0x55" into the preference. Everything except the overlay-key
respected this. Make the overlay-key binding respect this.
Break down the beautiful core/ui abstraction barrier by inserting
a pointer to MetaWindow into a MetaUIFrame. I'm a scoundrel, I know.
We'll use this very soon to destroy meta_core_get.
Whenever we added a frame to the GHashTable, we added the frame itself
as the value, and a pointer to its storage of the frame window XID,
as the key.
When we iterated over the hash table, we actually looked up the
MetaUIFrame in the key, which might seem extraordinarily wrong, but
eagle-eyed viewers might notice that the XID is the first field in
MetaUIFrame, so the key and value are actually the same pointer.
Changing the layout of MetaUIFrame at all causes this to go haywire,
so let's not do this and simply put the MetaUIFrame in the value,
as expected.
When the frame type updates, we were doing something funky that
caused us to reset the title used for the text layout here. I can't
really think of any place that it would trigger, and in testing I
haven't hit this either, so let's just remove the fancy logic and
assert this.