EGLStream textures are imported as GL_TEXTURE_EXTERNAL_OES and reading
pixels directly from them is not supported. To make it possible to get
pixels, create an offscreen framebuffer and paint the actor to it, then
read pixels from the framebuffer instead of the texture directly.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/362
When a texture is transformed in any way (e.g. Wayland buffer
transforms), we cannot just fetch the pixels from the texture directly
and be done with it, as that will result in getting the untransformed
pixels.
To properly get the pixels in their right form, first draw to an
offscreen framebuffer, using the same method as when painting on the
stage, then read from the framebuffer into a cairo image surface.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/362
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/408
Implements the `MetaScreenCastWindow` interface for screen-cast
`RecordWindow` mode.
`meta_window_actor_capture_into()` implementation is still pretty crude
and doesn't take into account subsurfaces and O-R windows so menus,
popups and other tooltips won't show in the capture.
This is left as a future improvement for now.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/306
The shader used for computing a vignette currently has two
problems:
* The math is wrong such that the vignette isn't stretched
across the whole actor and so ends abruptly
* There is noticeable banding in its gradient
This commit corrects both problems by fixing the computing
and introducing noise dithering.
This adds the necessary bits to support Wayland buffer transforms.
The main part here is to properly setup the Cogl pipeline
and to recalculate the size of the painted area accordingly,
so culling etc. still works.
The choosen approach additionally lays groundwork for Wayland
wp_viewporter support.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/322
It cuts out some of the GObject boilerplate, and gives us g_autoptr()
support for free.
Since this changes the ABI, we also need to bump the libmutter API
version.
Following up last commit, this commit adds a CoglFramebuffer
argument to meta_shadow_paint(), and stops using the draw
framebuffer internally.
The only consumer of this API, MetaWindowActor, still passes
the draw framebuffer though.
MetaShadow.paint() uses Cogl implicit APIs (cogl_rectangle* ones, in
this case) to paint shadows with the shadow pipeline.
Replace those calls by cogl_framebuffer_draw_textured_rectangle()
calls, that achieve the exact same result but with the non-deprecated
API.
This commit adds meson build support to mutter. It takes a step away
from the three separate code bases with three different autotools setups
into a single meson build system. There are still places that can be
unified better, for example by removing various "config.h" style files
from cogl and clutter, centralizing debug C flags and other configurable
macros, and similar artifacts that are there only because they were once
separate code bases.
There are some differences between the autotools setup and the new
meson. Here are a few:
The meson setup doesn't generate wrapper scripts for various cogl and
clutter test cases. What these tests did was more or less generate a
tiny script that called an executable with a test name as the argument.
To run particular tests, just run the test executable with the name of
the test as the argument.
The meson setup doesn't install test files anymore. The autotools test
suite was designed towards working with installed tests, but it didn't
really still, and now with meson, it doesn't install anything at all,
but instead makes sure that everything runs with the uninstalled input
files, binaries and libraries when running the test suite. Installable
tests may come later.
Tests from cogl, clutter and mutter are run on 'meson test'. In
autotools, only cogl and clutter tests were run on 'make check'.
Install include files in
$prefix/include/mutter-$apiversion/[clutter,cogl,...,meta]/, and
datafiles in /usr/share/mutter-$apiversion/.... We still would conflict
e.g. given that our gettext name is "mutter", and how keybindings are
installed, but it's a step in the right direction.
This is the filename convention you get when you define a shared module
in meson, and since there is no particular reason to not include the
"lib" prefix, lets make it easier to port it over. While at it,
de-duplicate the retrieval of the plugin name.
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
The clip and opaque region are both in a translated stage coordinate
space, where the origin is in the top left corner of the painted
texture. The painting, however, is in the texture coordinate space,
so when the texture is scaled, the coordinate spaces differ.
Handle this by transforming the clip and opaque region to texture
coordinate space before computing the blend region and the opaque region
to paint.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/300
They were int before entering MetaShapedTexture, used as ints in the
cairo regions and rectangles, so there is no reason they should be
stored as unsigned.
Related: https://gitlab.gnome.org/GNOME/mutter/issues/300
The compositor will automatically unredirect the top most window which
is fully visible on screen. When unredirecting windows, it also shapes
the compositor overlay window (COW) so that other redirected windows
still shows correctly.
The function `get_top_visible_window_actor()` however will simply walks
down the window list, so if a window is placed on a layer above and
unredirected, then iconified by the client, it will still be picked up
by `get_top_visible_window_actor()` and he compositor will reckon it's
still unredirected while not in a visible state anymore, thus leaving a
black area on screen.
Make sure we skip the windows not known to the compositor while picking
the top visible window actor to avoid this issue.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/306
The function is intentionally provided as macro to not require a
cast. Recently the macro was improved to check that the passed in
pointer matches the free function, so the cast to GDestroyNotify
is now even harmful.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/176
The special ::pick implementation there makes clutter fall into paths
that do require a get_paint_volume() implementation, or an infinite
area will be used.
Providing a paint volume here is easier on the invalidation mechanism.
This optimization was presumably added before Clutter was able to
invalidate selected regions of an actor. Paint volumes are supposed
to be invariable as long as the actor conditions don't change.
Stacking of other actors shouldn't affect the paint volume, so it's
actually wrong to optimize those areas away here.
- Stop using CurrentTime, introduce META_CURRENT_TIME
- Use g_get_monotonic_time () instead of relying on an
X server running and making roundtrip to it
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Split X11 specific parts into MetaX11Display. This also required
changing MetaScreen to stop listening to any signals by itself, but
instead relying on MetaDisplay forwarding them. This was to ensure the
ordering. MetaDisplay listens to both the internal and external
monitors-changed signal so that it can pass the external one via the
redundant MetaDisplay(prev MetaScreen)::monitors-changed.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
They are X11 specific functions, used for X11 code. They have been
improved per jadahl's suggestion to use gdk_x11_lookup_xdisplay and
gdk_x11_display_error_trap_* functions, instead of current code.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
- Moved xdisplay, name and various atoms from MetaDisplay
- Moved xroot, screen_name, default_depth and default_xvisual
from MetaScreen
- Moved some X11 specific functions from screen.c and display.c
to meta-x11-display.c
https://bugzilla.gnome.org/show_bug.cgi?id=759538
This avoids overwhelming the GPU with trying to update mipmaps at a high
rate. Because doing so could easily cause a reduction in the compositor
frame rate and thus actually reduce visual quality.
In the case of a window that is constantly animating in the overview,
this reduces mutter's render time by around 20%-30%.
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471