This uses actor paint volumes to perform culling during
clutter_actor_paint.
When performing a clipped redraw (because only a few localized actors
changed) then as we traverse the scenegraph painting the actors we can
now ignore actors that don't intersect the clip region. Early testing
shows this can have a big performance benefit; e.g. 100% fps improvement
for test-state with culling enabled and we hope that there are even much
more compelling examples than that in the real world,
Most Clutter applications are 2Dish interfaces and have quite a lot of
actors that get continuously painted when anything is animated. The
dynamic actors are often localized to an area of user focus though so
with culling we can completely avoid painting any of the static actors
outside the current clip region.
Obviously the cost of culling has to be offset against the cost of
painting to determine if it's a win, but our (limited) testing suggests
it should be a win for most applications.
Note: we hope we will be able to also bring another performance bump
from culling with another iteration - hopefully in the 1.6 cycle - to
avoid doing the culling in screen space and instead do it in the stage's
model space. This will hopefully let us minimize the cost of
transforming the actor volumes for culling.
This makes clutter_actor_queue_redraw transparently use an actor's paint
volume to queue a clipped redraw.
We save the actors paint box each time it is painted so that when
clutter_actor_queue_redraw is called we can determine the old and new
location of the actor so we know the full bounds of what must be redrawn
to clear its old view and show the new.
This makes _clutter_actor_transform_and_project_box a static function
and removes the prototype from clutter-private.h since it is no longer
used outside clutter-actor.c
The base implementation for the actor queue_relayout method was queuing
an implicit redraw, but there shouldn't be anything implied from the
mere process of queuing a redraw that should force us to queue a redraw.
If actors are moved as a part of relayouting later then they will queue
a redraw. Also clutter_actor_queue_relayout() still also explicitly
queues a redraw so I think this may have been doubly redundant.
If clutter_actor_allocate finds it necessary to update an actors
allocation then it now also queue a redraw of that actor. Currently we
queue redraws for actors very early on when queuing a relayout instead
of waiting to determine the final outcome of relayouting to determine if
a redraw is really required. With this in place we can move away from
preemptive queuing of redraws.
clutter_actor_queue_relayout currently queues a relayout and a redraw,
but the plan is to change it to only queue a relayout and honour the
documentation by assuming that the process of relayouting will
result queuing redraws for any actors whos allocation changes.
This doesn't make that change it just adds an internal
_clutter_actor_queue_only_relayout function which
clutter_actor_queue_relayout now uses as well as calling
clutter_actor_queue_redraw.
This adds a private ->relayout_pending boolean similar in spirit to
redraw_pending. This will allow us to queue a relayout without
implicitly queueing a redraw; instead we can depend on the actions
of a relayout to queue any necessary redraw.
When clutter_texture_new_from_actor is use we need to track when the
source actor queues a redraw or a relayout so we can also queue a redraw
or relayout for the texture actor.
There is an internal _clutter_actor_queue_redraw_with_clip API that gets
used for texture-from-pixmap to minimize what we redraw in response to
Damage events. It was previously working in terms of a ClutterActorBox
but it has now been changed so an actor can queue a redraw of volume
instead.
The plan is that clutter_actor_queue_redraw will start to transparently
use _clutter_actor_queue_redraw_with_clip when it can determine a paint
volume for the actor.
For the blur effect we use a BLUR_PADDING constant to pad out the volume
of the source actor on the x and y axis. Previously we were offsetting
the origin negatively using BLUR_PADDING and then adding BLUR_PADDING
to the width and height, but we should have been adding 2*BLUR_PADDING
instead.
This ensures that clipped redraws are disabled when using
CLUTTER_PAINT=redraws. This may seem unintuitive given that this option
is for debugging clipped redraws, but we can't draw an outline outside
the clip region and anything we draw inside the clip region is liable to
leave a trailing mess on the screen since it won't be cleared up by
later clipped redraws.
This adds a debug option to visualize the paint volumes of all actors.
When CLUTTER_PAINT=paint-volumes is exported in the environment before
running a Clutter application then all actors will have their bounding
volume drawn in green with a label corresponding to the actors type.
This is a fairly extensive second pass at exposing paint volumes for
actors.
The API has changed to allow clutter_actor_get_paint_volume to fail
since there are times - such as when an actor isn't a descendent of the
stage - when the volume can't be determined. Another example is when
something has connected to the "paint" signal of the actor and we simply
have no way of knowing what might be drawn in that handler.
The API has also be changed to return a const ClutterPaintVolume pointer
(transfer none) so we can avoid having to dynamically allocate the
volumes in the most common/performance critical code paths. Profiling was
showing the slice allocation of volumes taking about 1% of an apps time,
for some fairly basic tests. Most volumes can now simply be allocated on
the stack; for clutter_actor_get_paint_volume we return a pointer to
&priv->paint_volume and if we need a more dynamic allocation there is
now a _clutter_stage_paint_volume_stack_allocate() mechanism which lets
us allocate data which expires at the start of the next frame.
The API has been extended to make it easier to implement
get_paint_volume for containers by using
clutter_actor_get_transformed_paint_volume and
clutter_paint_volume_union. The first allows you to query the paint
volume of a child but transformed into parent actor coordinates. The
second lets you combine volumes together so you can union all the
volumes for a container's children and report that as the container's
own volume.
The representation of paint volumes has been updated to consider that
2D actors are the most common.
The effect apis, clutter-texture and clutter-group have been update
accordingly.
Previously we used the transformed allocation but that doesn't take
into account actors with depth which may be projected outside the
area covered by the transformed allocation.
The blur effect will sample pixels on the edges of the offscreen buffer,
so we want to add a padding to avoid clamping the blur.
We do this by creating a larger target texture, and updating the paint
volume of the actor during paint to take that padding into account.
We should be using the real, on-screen, transformed size of the actor to
size and position the offscreen buffer we use to paint the actor for an
effect.
An Effect implementation might override the paint volume of the actor to
which it is applied to. The get_paint_volume() virtual function should
be added to the Effect class vtable so that any effect can get the
current paint volume and update it.
The clutter_actor_get_paint_volume() function becomes context aware, and
does the right thing if called from within a ClutterEffect pre_paint()
or post_paint() implementation, by allowing all effects in the chain up
to the caller to modify the paint volume.
An actor has an implicit "paint volume", that is the volume in 3D space
occupied when painting itself.
The paint volume is defined as a cuboid with the origin placed at the
top-left corner of the actor; the size of the cuboid is given by three
vectors: width, height and depth.
ClutterActor provides API to convert the paint volume into a 2D box in
screen coordinates, to compute the on-screen area that an actor will
occupy when painted.
Actors can override the default implementation of the get_paint_volume()
virtual function to provide a different volume.
*** WARNING: THIS COMMIT CHANGES THE BUILD ***
Do not recurse into the backend directories to build private, internal
libraries.
We only recurse from clutter/ into the cogl sub-directory; from there,
we don't recurse any further. All the backend-specific code in Cogl and
Clutter is compiled conditionally depending on the macros defined by the
configure script.
We still recurse from the top-level directory into doc, clutter and
tests, because gtk-doc and tests do not deal nicely with non-recursive
layouts.
This change makes Clutter compile slightly faster, and cleans up the
build system, especially when dealing with introspection data.
Ideally, we also want to make Cogl part of the top-level build, so that
we can finally drop the sed trick to change the shared library from the
GIR before compiling it.
Currently disabled:
‣ OSX backend
‣ Fruity backend
Currently enabled but untested:
‣ EGL backend
‣ Windows backend
ClutterAnimator currently has a number of bugs related to its
referencing of its internal timeline.
1) The default timeline created in _init is not unreffed (it appears the
programmer has wrongly thought ClutterTimeline has a floating reference
based on the use of g_object_ref_sink in _set_timeline)
2) The timeline and slave_timeline vars are unreffed in finalize instead
of dispose
3) The signal handlers set up in _set_timeline are not disconnected when
the animator is disposed
http://bugzilla.clutter-project.org/show_bug.cgi?id=2347
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
This reorganizes the loop for clutter_actor_contains so that it is a
for loop rather than a while loop. Although this is mostly just
nitpicking, I think this change could make the loop slightly faster if
not optimized because it doesn't perform the self == descendant check
twice and it is clearer.
The documentation for clutter_actor_contains didn't specify what
happens when self==descendant. A strict reading of it might lead you
to think that it would return FALSE because in that case the
descendant isn't an immediate child or a deeper descendant. The code
actually would return TRUE. I think this is more useful so this patch
fixes the docs rather than the code.
When removing all keys in a ClutterAnimator, the hash table with
object/property name pairs went out of sync. This change makes
the animator always clear this hash table upon key-removal; and
refreshing it if the animator's timeline is running.
Fixes bug #2335
Each time a material property changes we look to see if any of its
ancestry has become redundant and if so we prune that redundant
ancestry.
There was a problem with the logic that handles this though because we
weren't considering that a material which is a layer state authority may
still defer to ancestors to define the state of individual layers.
For example a material that derives from a parent with 5 layers can
become a STATE_LAYERS authority by simply changing it's ->n_layers count
to 4 and in that case it can still defer to its ancestors to define the
state of those 4 layers.
This patch checks first if a material is a layer state authority and if
so only tries to prune its ancestry if it also *owns* all the individual
layers it depends on. (I.e. if g_list_length
(material->layer_differences) != material->n_layers then it's not safe
to try pruning its ancestry!)
http://bugzilla-attachments.gnome.org/attachment.cgi?id=170907
There is GL_INVALID_ENUM error for GL_DEPTH_STENCIL when call
glRenderbufferStorage() with OpenGL ES backend. So enable this
only for OpenGL backend.
Signed-off-by: Robert Bragg <robert@linux.intel.com>
This recipe explains how to use the three animation
approaches (implicit, State, Animator) to animate movement
of actors.
Includes some guidelines about which approach to use when, with
a full code example for each approach.
The discussion section covers some subtleties around animated
movement; namely: moving actors out of their containers; anchor
points and movement; moving in the depth axis; interactions
between animated movement and constraints.
Added an example showing how to move two actors between
two states (one minimised, one maximised) using ClutterState
to do the movement. Also shows how movement can be mixed
with other animation (in this case, scaling).
This is all internal, so we shouldn't need it; unfortunately, it seems
we're passing invalid data internally, so for the time being catching
inconsistencies should at least emit a warning for us to backtrace.
This adds a check in clutter_actor_real_queue_redraw after calling
_clutter_actor_get_stage_internal to check in case the actor doesn't yet
have an associated stage so we can avoid passing a NULL stage pointer to
_clutter_stage_set_pick_buffer_valid which could cause a crash.
This adds a "Cogl deprecated API" chapter to the Cogl reference manual
so we can group all the documentation for deprecated symbols together
instead of having them clutter up the documentation of symbols we would
rather developers used.
The CoglTexture3D API is only available when defining
COGL_ENABLE_EXPERIMENTAL_API so it should be listed in the experimental
section of the API reference.