Now set as a property during construction. Only actually set by the
Xrandr backend, as it's the only one currently not supporting all
transforms, which is the default.
While at it, move the 'ALL_TRANFORMS' macro to meta-monitor-tranforms.h.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
The output info is established during construction and will stay the
same for the lifetime of the MetaOutput object. Moving it out of the
main struct enables us to eventually clean up the MetaOutput type
inheritence to use proper GObject types.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
MetaCrtcInfo and MetaOutputInfo did not represent information about
MetaCrtc and MetaOutput, but the result of the monitor configuration
assignment algorithm, thus rename it to MetaCrtcAssignment and
MetaOutputAssignment.
The purpose for this is to be able to introduce a struct that actually
carries information about the CRTCs and outputs, as retrieved from the
backend implementations.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
That is is_presentation, is_primary, is_underscanning and backlight.
The first three are set during CRTC assignment as they are only valid
when active. The other is set separately, as it is untied to
monitor configuration.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
It was used during configuration to ensure that we always dealt with
every output and CRTC. Do this without polluting the MetaOutput and
MetaCrtc structs with intermediate variables not used by the
corresponding types themself.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Test that the stage-views list of ClutterActor is correct when moving an
actor, reparenting it, or hiding an actor up the hierarchy. Also test
that the "stage-views-changed" signal works as expected.
Don't test actor transforms for now because those aren't supported yet.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1196
Also fix a test that dependends on a specific element order in a list
that wasn't defined to have any particular order.
The frames per second is decreased from 30 to 10, to make the test less
flaky when running in CI.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1289
The shadow was disabled for the X11 client as it was far to unreliable
when comparing sizes.
It seems that the Wayland backend has been somewhat unreliable as well,
where some race condition causing incorrect sizes thus a flaky test.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1288
A "show" command calls gtk_window_show() and gdk_display_sync(), then
returns. This means that the X11 window objects are guaranteed to have
been created in the X11 server.
After that, the test runner will look up the window's associated
MetaWindow and wait for it to be shown.
What this doesn't account for is if mutter didn't get enough CPU time to
see the new window. When this happens, the 'default-size' stacking test
sometimes failed after hiding and showing the X11 window.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1288
wait_reconfigure ensures that the whole configure back and forth
completes before continuing. Doing this after every state change ensures
that we always end up with the expected state, thus fixes flakyness of
the restore-position stacking test.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1279
It's very useful to have common functions for easily creating a monitor
test setup for all kinds of tests, so move create_monitor_test_setup()
and check_monitor_configuration() and all the structs those are using to
monitor-test-utils.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
We're going to move some structs from monitor-unit-tests.c to
monitor-test-utils.h and some names are currently clashing with the
struct names here, so rename those to be specific to the
MonitorStoreUnitTests.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
check_monitor_test_clients_state() is a function that's only meant to be
used in the monitor-unit-tests, and since we're going to move the
functions for creating MonitorTestSetups into a common file, this
function is going to be in the way of that. So move the checking of the
test client state outside of check_monitor_test_clients_state().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
We're going to move the functions for building MonitorTestSetups to the
common monitor-test-utils.c file.
To make building test setups a bit more straightforward in case no
TestCaseExpect is wanted, change create_monitor_test_setup() to take a
MonitorTestCaseSetup instead of a MonitorTestCase as an argument.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
Commit e06daa58c3 changed the tested values to use corresponding valid
enum values instead of negative ones. Unfortunately that made one value
become a duplicate of an existing one and also in part defeated the original
intention of checking the implementation of
`meta_output_crtc_to_logical_transform`.
Use `meta_monitor_transform_invert` to fix both shortcomings.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1242
The test tests that (for both X11 and Wayland) that:
* The client unmaximizes after mapping maximized to a predictable size
* That the client unmaximizes to the same size after toggling maximize
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
This makes sure that a client has properly responded to a configure
event it itself triggered. In practice, this is just two 'wait'
commands, with a 'dispatch' in between, which is needed because a single
one does not reliably include the two way round trip happening when e.g.
responding to a unmaximize configure event triggered by a unmaximize
request.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
The 'assert_size' command checks that the size of the window, both
client side and compositor side, corresponds to an expected size set by
the test case.
The size comparison can only be done when the window is using 'csd', in
order for both the client and server to have the same amount of
understanding of the title bar. For ssd, the client cannot know how
large the title bar, thus cannot verify the full window size.
Sizes can be specified to mean the size of the monitor divided by a
number. This is that one can make sure a window is maximized or
fullscreened correctly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171