Placing persistant Wayland popups (e.g. not menus etc) in the o-r layer
breaks stacking order with other window trees (e.g. other client
windows), as the menu would get stuck in the o-r layer, i.e. on top,
even if the parent of the popup got lowered.
Fix this by placing the popups in the normal layer, relying on
transient-ness to keep stacking correct.
It's a UI pattern that has been superseded by client-side decorations,
apps that used to set the hint have generally moved on to headerbars.
Given that and the limitation to server-side decorated X11 windows,
GTK4 removed the client-side API for setting the hint, it's time to
follow suite and retire the feature.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/221
Moving windows using `move-to-side-X` and `move-corner-XX` keybindings
should keep windows within the confines of current screen.
`move-to-monitor-XXX` keybindings can be used to move windows to other
monitors.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/320
Commit 8d3e05305 ("window: Force update monitor on hot plugs") added the
flag `META_WINDOW_UPDATE_MONITOR_FLAGS_FORCE` passed to
`update_monitor()` from `update_for_monitors_changed()`.
However, `update_for_monitors_changed()` may choose to call another code
path to `move_between_rects()` and `meta_window_move_resize_internal()`
eventually.
As `meta_window_move_resize_internal()` does not use the "force" flag,
we may still end up in case where the window->monitor is left unchanged.
To avoid that problem, add a new `MetaMoveResizeFlags` that
`update_for_monitors_changed()` can use to force the monitor update from
`meta_window_move_resize_internal()`.
Fixes: 8d3e05305 ("window: Force update monitor on hot plugs")
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/189
It relied on indices in arrays determining tile direction and
non-obvious bitmask logic to translate to _GTK_EDGE_CONSTRAINTS. Change
this to explicitly named edge constraints, and clear translation methods
that converts between mutters and GTK+s edge constraint formats.
An unnecessary memory optimization, storing the tile mode as a 2 bit
unsigned integer, was used. While saving a few bytes, it made debugging
harder. Remove the useless byte packing.
This is the filename convention you get when you define a shared module
in meson, and since there is no particular reason to not include the
"lib" prefix, lets make it easier to port it over. While at it,
de-duplicate the retrieval of the plugin name.
While leaving the runtime checks in place, requiring xrandr 1.5 at build
time allows us to remove some seemingly unnecessary conditional
inclusion of functionality.
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
testboxes was a binary that did unit testing, but it wasn't integrated
to the test system, so in effect, it was never run. Instead integrate it
into the other mutter unit tests. This includes changing a few of
meta_warning()s into g_warning()s so that the GTest framework can handle
them.
meta_workspace_manager_override_workspace_layout is implemented by
calling meta_workspace_manager_update_workspace_layout which
respects the workspace_layout_overridden flag. After the first call
to meta_workspace_manager_override_workspace_layout all subsequent
calls fail silently.
Reset workspace_layout_overridden to FALSE before calling
meta_workspace_manager_update_workspace_layout.
https://gitlab.gnome.org/GNOME/mutter/issues/270
In order to allow a window with a custom rule placement to be moved
together with its parent, the final rule used derived from the
constraining were used for subsequent constraints. This was not enough
as some constraining cannot be translated into a rule, such as sliding
across some axis.
Instead, make it a bit simpler and just remember the position relative
to the parent window, and use that the next time.
This is a rework of 5376c31a33 which
caused the unwanted side effects.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/332
With Wayland, a window is not showing until it's shown. Until this
patch, the initial state of MetaWindow, on the other hand, was that a
window is initialized as showing. This means that for a window to
actually be classified as shown (MetaWindow::hidden set to FALSE),
something would first have to hide it.
Normally, this wasn't an issue, as normally we'd first create a window,
determine it shouldn't be visible (due to missing buffer), hide it
before the next paint, then eventually show it. This doesn't work if
mutter isn't drawing any frames at the moment (e.g. the user switched
VT), as we'd miss the hiding before showing as e result of a buffer
being attached. The most visible side effect is that a window can't be
moved as the window actor remains frozen.
This commit fixes this issue by correctly classifying a newly created
Wayland window as "hidden".
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/331
Changes in window decoration result in the window being reparented
in and out its frame. This in turn causes unmap/map events, and
XI_FocusOut if the window happened to be focused.
In order to preserve the focused window across the decoration change,
add a flag so that the focus may be restored on MapNotify.
Closes: #273
On Wayland, xdg-foreign would leave a modal dialog managed even after
the imported surface is destroyed.
This is sub-optimal and this breaks the atomic relationship one would
expect between the parent and its modal dialog.
Make sure we unmanage the dialog if transient_for is unset even for
Wayland native windows.
Related: https://gitlab.gnome.org/GNOME/mutter/issues/174
Related: https://gitlab.gnome.org/GNOME/mutter/issues/221
A window placed using a placement rule should keep that relative
position even if the parent window moves, as the position tied to the
parent window, not to the stage. Thus, if the parent window moves, the
child window should move with it.
In the implementation in this commit, the constraints engine is not
used when repositioning the children; the window is simply positioned
according to the effective placement rule that was derived from the
initial constraining, as the a xdg_popup at the moment cannot move
(relative its parent) after being mapped.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/274
Commit a3da4b8d5b changed updating of
window monitors to always use take affect when it was done from a
non-user operation. This could cause feed back loops when a non-user
driven operation would trigger the changing of a monitor, which itself
would trigger changing of the monitor again due to a window scale
change.
The reason for the change, was that when the window monitor changed due
to a hot plug, if it didn't actually change, eventually the window
monitor pointer would be pointing to freed memory.
Instead of force updating the monitor on all non-user operations, just
do it on hot plugs. This allows for the feedback loop preventing logic
to still do what its supposed to do, without risking dangling pointers
on hot plugs.
Related: https://gitlab.gnome.org/GNOME/mutter/issues/189
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/192
The bool determines whether the call was directly from a user operation
or not. To add more state into the call without having to add more
boolenas, change the boolean to a flag (so far with 'none' and 'user-op'
as possible values). No functional changes were made.
https://gitlab.gnome.org/GNOME/mutter/issues/192
The function is intentionally provided as macro to not require a
cast. Recently the macro was improved to check that the passed in
pointer matches the free function, so the cast to GDestroyNotify
is now even harmful.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/176
Since commit b3b9d9e16 we no longer have to pass the unmanaging window
to make sure we don't try to focus it again, however the parameter also
influences the focus policy by giving ancestors preference over the normal
stack order.
https://gitlab.gnome.org/GNOME/mutter/issues/15
We refuse to move focus while a grab operation is in place. While this
generally makes sense, there's no reason why the window that owns the
grab shouldn't be given the regular input focus as well - we pretty
much assume that the grab window is also the focus window anyway.
In fact there's a strong reason for allowing the focus change here:
If the grab window isn't the focus window, it probably has a modal
transient that is focused instead, and a likely reason for the focus
request is that the transient is being unmanaged and we must move
the focus elsewhere.
https://gitlab.gnome.org/GNOME/mutter/issues/15
Previously we relied on the test-client to make sure that a window was
shown. For X11, we did not need to do anything, but for Wayland we had
to make sure we had drawn the first frame, otherwise mutter wouldn't
have a buffer making the window not showable.
Doing it this way doesn't work anymore however, since the 'after-paint'
event will be emitted even if we didn't actually paint anything. This is
the case with current Gtk under Wayland, where we won't draw until the
compositor has configured the surface. In effect, this mean we'll get a
dummy after-paint emission before the first frame is actually painted.
Instead, move the verification that a "show" command has completed by
having the test-runner wait for a "shown" signal on the window, which is
emitted in the end of meta_window_show(). This requires an additional
call to gdk_display_sync() in the test-client after creating the window,
to make sure that the window creation vents has been received in the
compositor.
As of "stack-tracker: Keep override redirect windows on top"
(e3d5bc077d), we always sorted all
override redirect on top of regular windows, as so is expected by
regular override redirect windows. This had an unwanted consequence,
however, which is that we should still not sort such override redirect
windows on top if they are behind the guard window, as that'd result in
windows hidden behind it now getting restacked anyway.
Fix this by only sorting the override redirect windows that are found
above the guard window on top. This fixes the override-redirect stacking
test.
xdg-foreign clears the `transient_for` of a modal dialog when its
imported parent is destroyed, which would later cause a crash in
`constrain_modal_dialog()` because the transient `NULL`.
So in case a modal dialog has no parent, do not try to constrain it
against its parent.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/174
MetaDisplay still had workspace signals, but nothing emitted them,
meaning we wouldn't get warnings if handlers were added there instead
of to MetaWorkspaceManager.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
If we wait with opening the X11 window decoration GDK connection, we
might end up with a terminated X11 server before we finish
initializing, depending on the things happening after spawning Xwayland
and before opening the MetaX11Dispaly. In gnome-shell, this involves
e.g. creating a couple of temporary X11 connections, and on disconnect,
if they happen to be the last client, the X server will terminate
itself.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Under Xorg the cursor size preference was pre-scaled originating from
gtk, while with Wayland it came directly from GSettings remaining
unscaled. Under Xwayland this caused the X11 display code to set the
wrong size with HiDPI configurations, which was often later overridden
by the equivalent code in gtk, but not always.
Fix this by always having the cursor size preference unscaled, scaling
the size correctly where it's used, depending on how it's used.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
GTK+ won't be initialized if X11 is not available
Instead, when setting gtk-shell-shows-app-menu,
meta_prefs_set_show_fallback_app_menu should be
called as well.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Allow removing a prefs handler that was already removed. This allows us
to remove prefs from the dispose function without having to keep track
of it in every place.
- Stop using CurrentTime, introduce META_CURRENT_TIME
- Use g_get_monotonic_time () instead of relying on an
X server running and making roundtrip to it
https://bugzilla.gnome.org/show_bug.cgi?id=759538
This moves following objects from MetaScreen to MetaDisplay
- workareas_later and in_fullscreen_later signals and functions
- startup_sequences signals and functions
- tile_preview functions
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Split X11 specific parts into MetaX11Display. This also required
changing MetaScreen to stop listening to any signals by itself, but
instead relying on MetaDisplay forwarding them. This was to ensure the
ordering. MetaDisplay listens to both the internal and external
monitors-changed signal so that it can pass the external one via the
redundant MetaDisplay(prev MetaScreen)::monitors-changed.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
They are X11 specific functions, used for X11 code. They have been
improved per jadahl's suggestion to use gdk_x11_lookup_xdisplay and
gdk_x11_display_error_trap_* functions, instead of current code.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
- Moved xdisplay, name and various atoms from MetaDisplay
- Moved xroot, screen_name, default_depth and default_xvisual
from MetaScreen
- Moved some X11 specific functions from screen.c and display.c
to meta-x11-display.c
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Introduce a new type MetaCursorSpriteXcursor that is a MetaCursorSprite
implementation backed by Xcursor images. A plain MetaCursorSprite can
still be created "bare bone", but must be manually provided with a
texture. These usages will eventually be wrapped into new
MetaCursorSprite types while turning MetaCursorSprite into an abstract
type.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It was prefixed with meta_cursor_, but it took a X11 Display, so update
the naming. Eventually it should be duplicated depending if it's a
frontend X11 connection call or a backend X11 connection call and moved
to the corresponding layers, but let's just do this minor cleanup for
now.
https://gitlab.gnome.org/GNOME/mutter/issues/77
The MetaCloseDialog implementation object may stay artifically alive
for a longer period. This was usually fine till gnome-shell commit
b03bcc85aad, as the check_alive() timeout will keep running even
though the window went unmanaged/destroyed, leading to crashes.
In order to fix this, forcibly hide the dialog if it is visible and
the window is being unmanaged, so the timeout is stopped in time.
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471
In the old, synchronous X.org world, we could assume that
a state change always meant a synchronizing the window
geometry right after. After firing an operation that
would change the window state, such as maximizing or
tiling the window,
With Wayland, however, this is not valid anymore, since
Wayland is asynchronous. In this scenario, we call
meta_window_move_resize_internal() twice: when the user
executes an state-changing operation, and when the server
ACKs this operation. This breaks the previous assumptions,
and as a consequence, it breaks the GNOME Shell animations
in Wayland.
The solution is giving the MetaWindow control over the time
when the window geometry is synchronized with the compositor.
That is done by introducing a new result flag. Wayland asks
for a compositor sync after receiving an ACK from the server,
while X11 asks for it right away.
Fixes#78
And use the old "native" backend for both X11 and Wayland. This will
allow us to share fixes between implementations without having to delve
into the XSync X11 extension code.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
Raising and lowering windows in tandem without a proper grouping
mechanism ended up being more annoying than functional.
This reverts commit e76a0f564c.
When painting the titlebar, button icons that aren't available in the
desired size need to be scaled. However the current code inverses the
scale factor, with the result that the adjusted icons are much worse
than the original icons, whoops.
This went unnoticed for a long time given that most icons are availa-
ble in the desired 16x16 size, and the most likely exceptions - window
icons - are not shown by default.
https://gitlab.gnome.org/GNOME/mutter/issues/23
This is in order to force running as a X11 window manager/compositing
manager. Useful for debugging and other cases where the automatic
detection does not work as expected.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/15
When maximizing a window, the previous location is saved so that
un-maximize would restore the same original window location.
However, if a Wayland client starts with a window maximized, the
previous location will be 0x0, so if we have to force placement in
xdg_toplevel_set_maximized(), we should update the location as well so
that the window is placed on the right monitor when un-maximizing.
For that purpose, add a new flag to force the update of the window
location, and use that flag from xdg_toplevel_set_maximized().
https://bugzilla.gnome.org/show_bug.cgi?id=783901
Wayland clients know their size better, so for Wayland we'd rather not
try to resize the client on un-maximize, but for this to work we need a
new MetaMoveResizeFlags.
https://bugzilla.gnome.org/show_bug.cgi?id=783901
When closing a window and showing a new one, the new one may not be
granted input focus until it gets a buffer on Wayland.
If another window is chosen to receive focus and raised on top of stack,
the newly mapped window is focused but placed underneath that other
window.
Meaning that for Wayland surfaces, we need to defer adding the window to
the stack until we actually get to show it, once we have a buffer
attached.
Rather that checking the windowing backend prior to decide if a window
is stackable or not, introduce a new vfunc is_stackable() which tells
if a window should be added to the stack regardless of the underlying
windowing system.
Also add meta_window_is_in_stack() API rather than checking the stack
position directly (replacing the define WINDOW_IN_STACK only available
in stack.c) and remove a window from the stack only if it is present
in the stack, so that the test in meta_stack_remote() becomes
irrelevant.
https://bugzilla.gnome.org/show_bug.cgi?id=780820
When a Wayland client issues a shortcut inhibit request which is granted
by the user, the Super key should be passed to the surface instead of
being handled by the compositor.
https://bugzilla.gnome.org/show_bug.cgi?id=790627
The reason why multiple keycodes could be mapped to a single keysym was
to support having both KEY_FAVORITES and KEY_BOOKMARK map to
XF86Favorites. However, iterating through all layout levels adding all
key codes has severe consequences on layouts with levels that map
things like numbers and arrow. The result is that keybindings that
should only have been added for keycodes from the first level, are
replaced by some unexpected keycode where the same keysym was found on
another level.
An example of this is the up-arrow key and l symbol. Normally you'd find
both the up-arrow symbol and the l symbol on the first level and be done
with it. However, on the German Neo-2 layout, layout level 4 maps the
KEY_E to the l symbol, while layout level 4 maps KEY_E to up-arrow.
Which ever gets to take priority is arbitrary, but for this particular
case KEY_E incorrectly mapped to up-arrow instead of the l symbol,
causing the keyboard shortcut Super+l, which would normally lock the
screen, to trigger the workspace-up (Super+up-arrow) key binding.
https://bugzilla.gnome.org/show_bug.cgi?id=789300