This interface represents any textures that are backed by a single
texture in GL and that can be used directly with the
cogl_framebuffer_draw_attributes family of functions. This currently
equates to CoglTexture2D, CoglTexture3D and CoglTextureRectangle.
The interface currently has only one method called
cogl_primitive_set_auto_mipmap. This replaces the
COGL_TEXTURE_NO_AUTO_MIPMAP flag from the CoglTextureFlags parameter
in the constructors. None of the other flags in CoglTextureFlags make
sense for primitive textures so it doesn't seem like a good idea to
need them for primitive constructors.
There is a boolean in the vtable to mark whether a texture type is
primitive which the new cogl_is_primitive function uses. There is also
a new texture virtual called set_auto_mipmap which is only required to
be implemented for primitive textures.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This also replaces use of CoglHandle with a CoglTexturePixmapX11 type
instead.
This patch also ensures the CoglTexturePixmapX11 constructor take an
explicit CoglContext pointer and can return a GError consistent with
other CoglTexture constructors.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The previous detection was based on bits per pixel only and would
consider bpp >= 24 as X888 or 8888 24-bit color depth formats.
This commit ensures we now use the newly added
_cogl_util_pixel_format_from_masks() api that returns a CoglPixelFormat
according to channel masks and color depth. This helps to add support
for more pixel formats.
https://bugzilla.gnome.org/show_bug.cgi?id=660188
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds an internal function to get the type of the underlying
hardware texture for any CoglTexture. It can return one of three
values to represent 2D textures, 3D textures or rectangle textures.
The idea is that this can be used as a replacement for
cogl_texture_get_gl_texture when only the target is required to make
it a bit less GL-centric. The implementation adds a new virtual
function which all of the texture backends now implement.
The enum is in a public header because a later patch will want to use
it from the CoglPipeline API. We may want to consider making the
function public too later.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The foreach_sub_texture_in_region implementation tries to forward the
function on to its child texture but it was mistakenly forwarding back
on to itself so it would just recurse endlessly and crash.
Xlib headers define many trivially named objects which can later cause
name collision problems when only cogl.h header is included in a program
or library. Xlib headers are now only included through including the
standalone header cogl-xlib.h.
https://bugzilla.gnome.org/show_bug.cgi?id=661174
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This exposes CoglTextureRectangle in the experimental cogl 2.0 api. For
now we just expose a single constructor;
cogl_texture_rectangle_new_with_size() but we can add more later.
This is part of going work to improve our texture apis with more
emphasis on providing low-level access to the varying semantics of
different texture types understood by the gpu instead of only trying to
present a lowest common denominator api.
CoglTextureRectangle is notably useful for never being restricted to
power of two sizes and for being sampled with non-normalized texture
coordinates which can be convenient for use a lookup tables in glsl due
to not needing separate uniforms for mapping normalized coordinates to
texels. Unlike CoglTexture2D though rectangle textures can't have a
mipmap and they only support the _CLAMP_TO_EDGE wrap mode.
Applications wanting to use CoglTextureRectangle should first check
cogl_has_feature (COGL_FEATURE_ID_TEXTURE_RECTANGLE).
Reviewed-by: Neil Roberts <neil@linux.intel.com>
CoglMetaTexture is an interface for dealing with high level textures
that may be comprised of one or more low-level textures internally. The
interface allows the development of primitive drawing APIs that can draw
with high-level textures (such as atlas textures) even though the
GPU doesn't natively understand these texture types.
There is currently just one function that's part of this interface:
cogl_meta_texture_foreach_in_region() which allows an application to
resolve the internal, low-level textures of a high-level texture.
cogl_rectangle() uses this API for example so that it can easily emulate
the _REPEAT wrap mode for textures that the hardware can't natively
handle repeating of.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
If we failed to create a native texture from pixmap via EGL or GLX then
we shouldn't call the winsys's texture_pixmap_x11_damage_notify
function. By doing the validation in cogl-texture-pixmap-x11.c the
winsys code can continue to assume that it doesn't need to verify there
is a valid tex_pixmap->winsys pointer.
Thanks to Damien Leone <dleone@nvidia.com> for catching this issue.
https://bugzilla.gnome.org/show_bug.cgi?id=660184
As part of the on going, incremental effort to purge the non type safe
CoglHandle type from the Cogl API this patch tackles most of the
CoglHandle uses relating to textures.
We'd postponed making this change for quite a while because we wanted to
have a clearer understanding of how we wanted to evolve the texture APIs
towards Cogl 2.0 before exposing type safety here which would be
difficult to change later since it would imply breaking APIs.
The basic idea that we are steering towards now is that CoglTexture
can be considered to be the most primitive interface we have for any
object representing a texture. The texture interface would provide
roughly these methods:
cogl_texture_get_width
cogl_texture_get_height
cogl_texture_can_repeat
cogl_texture_can_mipmap
cogl_texture_generate_mipmap;
cogl_texture_get_format
cogl_texture_set_region
cogl_texture_get_region
Besides the texture interface we will then start to expose types
corresponding to specific texture types: CoglTexture2D,
CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and
CoglTexturePixmapX11.
We will then also expose an interface for the high-level texture types
we have (such as CoglTexture2DSlice, CoglSubTexture and
CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an
additional interface that lets you iterate a virtual region of a meta
texture and get mappings of primitive textures to sub-regions of that
virtual region. Internally we already have this kind of abstraction for
dealing with sliced texture, sub-textures and atlas textures in a
consistent way, so this will just make that abstraction public. The aim
here is to clarify that there is a difference between primitive textures
(CoglTexture2D/3D) and some of the other high-level textures, and also
enable developers to implement primitives that can support meta textures
since they can only be used with the cogl_rectangle API currently.
The thing that's not so clean-cut with this are the texture constructors
we have currently; such as cogl_texture_new_from_file which no longer
make sense when CoglTexture is considered to be an interface. These
will basically just become convenient factory functions and it's just a
bit unusual that they are within the cogl_texture namespace. It's worth
noting here that all the texture type APIs will also have their own type
specific constructors so these functions will only be used for the
convenience of being able to create a texture without really wanting to
know the details of what type of texture you need. Longer term for 2.0
we may come up with replacement names for these factory functions or the
other thing we are considering is designing some asynchronous factory
functions instead since it's so often detrimental to application
performance to be blocked waiting for a texture to be uploaded to the
GPU.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
If _cogl_winsys_texture_pixmap_x11_create() fails then implicitly no
private state has been associated with the given tex_pixmap. Since that
winsys isn't associated with it we explicitly set tex_pixmap->winsys =
NULL.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This ensures that tex_pixmap->use_winsys_texture is always initialized
during cogl_texture_pixmap_x11_new - either according to the result of
winsys->texture_pixmap_x11_create, or if the winsys doesn't support tfp
we explicitly initialize to FALSE.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds Xlib and Win32 typesafe replacements for
cogl_renderer_handle_native_event, cogl_renderer_add_native_filter,
cogl_renderer_remove_native_filter. The old functions are kept as an
implementation detail so we can share code.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
The wrapper for the can_hardware_repeat had a cut and paste error so
it would call the wrong function on the child texture.
Many thanks to Owen Taylor for finding this bug.
Instead of using _cogl_xlib_add/remove_filter we now use
_cogl_renderer_add/remove_native_filter. The _cogl_xlib_add_filter API
was only required as a stop gap while EGL support was still in Clutter
because in that case we were using the stub winsys and didn't have a
CoglRenderer.
So that we can dynamically select what winsys backend to use at runtime
we need to have some indirection to how code accesses the winsys instead
of simply calling _cogl_winsys* functions that would collide if we
wanted to compile more than one backend into Cogl.
This moves the GLX specific code from cogl-texture-pixmap-x11.c into
cogl-winsys-glx.c. If we want the winsys components to by dynamically
loadable then we can't have GLX code scattered outside of
cogl-winsys-glx.c. This also sets us up for supporting the
EGL_texture_from_pixmap extension which is almost identical to the
GLX_texture_from_pixmap extension.
Instead of having cogl_renderer_xlib_add_filter and friends there is
now cogl_renderer_add_native_filter which can be used regardless of
the backend. The callback function for the filter now just takes a
void pointer instead of an XEvent pointer which should be interpreted
differently depending on the backend. For example, on Xlib it would
still be an XEvent but on Windows it could be a MSG. This simplifies
the code somewhat because the _cogl_xlib_add_filter no longer needs to
have its own filter list when a stub renderer is used because there is
always a renderer available.
cogl_renderer_xlib_handle_event has also been renamed to
cogl_renderer_handle_native_event. This just forwards the event on to
all of the listeners. The backend renderer is expected to register its
own event filter if it wants to process the events in some way.
This migrates all the GLX window system code down from the Clutter
backend code into a Cogl winsys. Moving OpenGL window system binding
code down from Clutter into Cogl is the biggest blocker to having Cogl
become a standalone 3D graphics library, so this is an important step in
that direction.
This tries to make the naming style of files under cogl/winsys/
consistent with other cogl source files. In particular private header
files didn't have a '-private' infix.
When we added the texture->framebuffers member a _cogl_texture_init
funciton was added to initialize the list of framebuffers associated
with a texture to NULL. All the backends were updated except the
x11 tfp backend. This was causing crashes in test-pixmap.
This applies an API naming change that's been deliberated over for a
while now which is to rename CoglMaterial to CoglPipeline.
For now the new pipeline API is marked as experimental and public
headers continue to talk about materials not pipelines. The CoglMaterial
API is now maintained in terms of the cogl_pipeline API internally.
Currently this API is targeting Cogl 2.0 so we will have time to
integrate it properly with other upcoming Cogl 2.0 work.
The basic reasons for the rename are:
- That the term "material" implies to many people that they are
constrained to fragment processing; perhaps as some kind of high-level
texture abstraction.
- In Clutter they get exposed by ClutterTexture actors which may be
re-inforcing this misconception.
- When comparing how other frameworks use the term material, a material
sometimes describes a multi-pass fragment processing technique which
isn't the case in Cogl.
- In code, "CoglPipeline" will hopefully be a much more self documenting
summary of what these objects represent; a full GPU pipeline
configuration including, for example, vertex processing, fragment
processing and blending.
- When considering the API documentation story, at some point we need a
document introducing developers to how the "GPU pipeline" works so it
should become intuitive that CoglPipeline maps back to that
description of the GPU pipeline.
- This is consistent in terminology and concept to OpenGL 4's new
pipeline object which is a container for program objects.
Note: The cogl-material.[ch] files have been renamed to
cogl-material-compat.[ch] because otherwise git doesn't seem to treat
the change as a moving the old cogl-material.c->cogl-pipeline.c and so
we loose all our git-blame history.
There are ordering issues in the pixmap destruction with current and
past X11 server, Mesa and dri2. Under some circumstances, an X pixmap
might be destroyed with the GLX pixmap still referencing it, and thus
the X server will decide to destroy the GLX pixmap as well; then, when
Cogl tries to destroy the GLX pixmap, it gets BadDrawable errors.
Clutter 1.2 used to trap + sync all calls to glXDestroyPixmap(), but
then we assumed that the ordering issue had been solved. So, we're back
to square 1.
I left a Big Fat Comment™ right above the glXDestroyPixmap() call
referencing the bug and the reasoning behind the trap, so that we don't
go and remove it in the future without checking that the issue has been
in fact solved.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2324
In general cogl-material.c has become far to large to manage in one
source file. As one of the ways to try and break it down this patch
starts to move some of lower level texture unit state management out
into cogl-material-opengl.c. The naming is such because the plan is to
follow up and migrate the very GL specific state flushing code into the
same file.
Using 'r' to name the third component is problematic because that is
commonly used to represent the red component of a vector representing
a color. Under GLSL this is awkward because the texture swizzling for
a vector uses a single letter for each component and the names for
colors, textures and positions are synonymous. GLSL works around this
by naming the components of the texture s, t, p and q. Cogl already
effectively already exposes this naming because it exposes GLSL so it
makes sense to use that naming consistently. Another alternative could
be u, v and w. This is what Blender and Direct3D use. However the w
component conflicts with the w component of a position vertex.
There was a lot of common code that was copied to all of the backends
to convert the data to a suitable format and wrap it into a CoglBitmap
so that it can be passed to _cogl_texture_driver_upload_subregion_to_gl.
This patch moves the common code to cogl-texture.c so that the virtual
just takes a CoglBitmap that is already in the right format.
Previously cogl_texture_get_data would pretty much directly pass on to
the get_data texture virtual function. This ended up with a lot of
common code that was copied to all of the backends. For example, the
method is expected to return the required data size if the data
pointer is NULL and to calculate its own rowstride if the rowstride is
0. Also it needs to convert the downloaded data if GL can't support
that format directly.
This patch moves the common code to cogl-texture.c so the virtual is
always called with a format that can be downloaded directly by GL and
with a valid rowstride. If the download fails then the virtual can
return FALSE in which case cogl-texture will use the draw and read
fallback.
A pedantic change to get_fbconfig_for_depth() so that we don't need to
make any assumptions about the GLXFBConfig typedef or what values
we can overload to indicate an invalid config.
get_fbconfig_for_depth() now simply returns FALSE if it fails to find a
config.
This is a publicly exposed texture backend to create a texture which
contains the contents of an X11 pixmap. The API is currently marked as
experimental.
The backend internally holds a handle to another texture. All of the
backend virtuals simply redirect to the internal texture.
The texture can optionally be automatically updated if the
automatic_updates parameter is TRUE. If set then Cogl will listen for
damage events on the pixmap and update the texture accordingly.
Alternatively a damage object can be created externally and passed
down to Cogl.
The updates can be performed with XGetImage, XShmGetImage or the
GLX_EXT_texture_pixmap extension. If the TFP extension is used it will
optionally try to create a rectangle texture if the driver does not
support NPOTs or it is forced through the
COGL_PIXMAP_TEXTURE_RECTANGLE or CLUTTER_PIXMAP_TEXTURE_RECTANGLE
environment variables.
If the GLXFBConfig does not support mipmapping then it will fallback
to using X{Shm,}GetImage. It keeps a separate texture around for this
so that it can later start using the TFP texture again if the texture
is later drawn with mipmaps disabled.