This adds a --enable-profile option which enables uprof based profiling.
It was also necessary to fixup a CLUTTER_ENABLE_PROFILING #ifdef in
cogl-context.c to renamed COGL_ENABLE_PROFILING instead. By default Cogl
doesn't output uprof reports directly, instead it assumes a higher level
toolkit will output a report. If you want a report from Cogl you can
export COGL_PROFILE_OUTPUT_REPORT=1 before running your app.
The latest version of uprof can be fetched from:
git://github.com/rib/UProf.git
This explicitly renames the cogl-2.0 reference manual to
cogl-2.0-experimental and renames the cogl-2.0 pkg-config file to
cogl-2.0-experimental.pc. Hopefully this should avoid
miss-understandings.
This adds an extra header that gets included from config.h where we
can add configuration defines. This is used to #undef 'near' and 'far'
when building for Windows so that we don't have to avoid using them as
variable names in the Cogl code.
This adds internal API to be able to wrap a wayland buffer as a
CoglTexture2D. There is a --enable-wayland-egl-server option to decide
if Cogl should support this feature and potentially any EGL based winsys
could support this through the EGL_KHR_image_base and
EGL_WL_bind_display extensions.
This moves the --enable-cairo check because it was put in the middle of
the logic that handles the --enable-debug option. This moves the
--enable-cairo check down after the --enable-debug logic and adds a
comment header to delimit the option like we have for other options.
Instead of the stub winsys being a special case set of #ifdef'd code
used when COGL_HAS_FULL_WINSYS wasn't defined, the stub winsys now
implements a CoglWinsysVtable like all other winsys backends (it's just
that everything is a NOP). This way we can get rid of the
COGL_HAS_FULL_WINSYS define and also the stub winsys can be runtime
selected whereas before it was incompatible with all other winsys
backends.
Until we have a standalone quartz winsys we don't want to define a
winsys name called "quartz" which is what the current --enable-quartz
option does. For now anyone building for OSX needs to use the stub
winsys and setup their own GL context.
The native window type of the EGL/Android winsys is ANativeWinow*. The
Android NDK gives you a pointer to this ANativeWindow and you just need
to configure that window using the EGLConfig you are choosing when
creating the context.
This means you have to know the ANativeWindow* window before creating
the context. This is solved here by just having a global variable you
can set with cogl_android_set_native_window() before creating the
context. This is a bit ugly though, and it conceptually belongs to the
OnScreen creation to know which ANativeWindow* to use. This would need a
"lazy context creation" mechanism, waiting for the user to create the
OnScreen to initialize the GL context.
Early implementations provided only a GLES/egl.h while Khronos's
implementer guide now states EGL/egl.h is the One. Some implementations
keep a GLES/egl.h wrapper around EGL/egl.h for backward compatibility
while others provide EGL/egl.h only.
Also took the opportunity to factorize a bit this inclusion in
cogl-defines.h.
When checking for EGL earlier in the configure script (ie EGL_CHECKED is
"yes"), we did not execute some EGL code. Let's split that code in two:
- A first part that has a last change to check for EGL
- A second one that defines variables and that should always been run
in an EGL build
GLES/glext.h and GLES2/gl2ext.h need to include GLES/gl.h and
GLES2/gl2.h respectively to get the GL types.
This used to work as autoconf used to only do a preprocessor pass in
AC_CHECK_HEADER(S), but now it also tries to compile a small test
program and thus the test failed.
Gtk-doc can be hard to install on Windows. This patch enables people wanting to
hack on Cogl itself from a Windows system to do so without the hassle to get
gtk-doc installed first.
The semantics of shadowing global variables is well defined and it gets
quite annoying to avoid them completely since there are too many
standard APIs with very poor namespacing.
Wayland now supports integration via standard eglSurfaces which makes it
possible to share more code with other EGL platforms. (though at some
point cogl-winsys-egl.c really needs to gain a more formal
CoglEGLPlatform abstraction so we can rein back on the amount of #ifdefs
we have.)
This pulls in the experimental cogl 2.0 reference manual from the
clutter repository since it wasn't included in the filter-branch when we
split cogl out.
When Cogl was sharing Clutter's configure script, it had a check for
the ffs function of libc so that it can provide a fallback if it is
not available. This fallback was missed in the split out so Cogl would
end up always using the fallback.
This removes all the remnants from being able to build Cogl standalone
while it was part of the Clutter repository. Now that Cogl has been
split out then standalone builds are the only option.
We now install cogl-pango-1.0 and cogl-pango-2.0 pkg-config files that
applications should optionally depend on if they want to use the
cogl_pango API.
For compatibility with the way we build Cogl as part of Clutter we now
substitute an empty MAINTAINER_CFLAGS variable. When building Cogl
standalone all our extra CFLAGS go through COGL_EXTRA_CFLAGS so the
separate MAINTAINER_CFLAGS aren't used, but automake will get confused
if a substitution isn't made.
This fixes the gdk-pixbuf check to not mistakenly check for the "xi"
package instead of gdk-pixbuf and remove a spurious listing "gl" in
COGL_PKG_REQUIRES which should only be there when we are using using
opengl not if we are using gles.
Until Cogl gains native win32/OSX support this remove the osx and win32
winsys files and instead we'll just rely on the stub-winsys.c to handle
these platforms. Since the only thing the platform specific files were
providing anyway was a get_proc_address function; it was trivial to
simply update the clutter backend code to handle this directly for now.
We want to be able to split Cogl out as a standalone project but there
are still some window systems that aren't natively supported by Cogl.
This allows Clutter to support those window systems directly but still
work with a standalone Cogl library.
This also ensures we set the SUPPORT_STUB conditional in clutter's
configure.ac when building for win32/osx and wayland.
Instead of using AC_DEFINE for the various COGL_HAS_PLATFORM defines
this now adds them to the COGL_DEFINES_SYMBOLS variable which gets
substituted into the public cogl-defines.h header.
This adds a simple standalone Cogl application that can be used to
smoke test a standalone build of Cogl without Clutter.
This also adds an x11-foreign app that shows how a toolkit can ask Cogl
to draw to an X Window that it owns instead of Cogl being responsible
for automatically creating and mapping an X Window for CoglOnscreen.
This allows more detailed control over the driver and winsys features
that Cogl should have. Cogl is designed so it can support multiple
window systems simultaneously so we have enable/disable options for
the drivers (gl vs gles1 vs gles2) and options for the individual window
systems; currently glx and egl. Egl is broken down into an option
for each platform.
The GDL API is used for example on intel ce4100 (aka Sodaville) based
systems as a way to allocate memory that can be composited using the
platforms overlay hardware. This updates the Cogl EGL winsys and the
support in Clutter so we can continue to support these platforms.
The "DRM_SURFACELESS" EGL platform was invented when we were adding the
wayland backend to Clutter but in the end we added a dedicated backend
instead of extending the EGL backend so actually the platform name isn't
used.
This backend hasn't been used for years now and so because it is
untested code and almost certainly doesn't work any more it would be a
burdon to continue trying to maintain it. Considering that we are now
looking at moving OpenGL window system integration code down from
Clutter backends into Cogl that will be easier if we don't have to
consider this backend.
This adds an autogen.sh, configure.ac and build/autotool files etc under
clutter/cogl and makes some corresponding Makefile.am changes that make
it possible to build and install Cogl as a standalone library.
Some notable things about this are:
A standalone installation of Cogl installs 3 pkg-config files;
cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for
compatibility with what clutter installed though I'm not sure that
anything uses it so maybe we could remove it. cogl-1.0.pc is what
Clutter would use if it were updated to build against a standalone cogl
library. cogl-2.0.pc is what you would use if you were writing a
standalone Cogl application.
A standalone installation results in two libraries currently, libcogl.so
and libcogl-pango.so. Notably we don't include a major number in the
sonames because libcogl supports two major API versions; 1.x as used by
Clutter and the experimental 2.x API for standalone applications.
Parallel installation of later versions e.g. 3.x and beyond will be
supportable either with new sonames or if we can maintain ABI then we'll
continue to share libcogl.so.
The headers are similarly not installed into a directory with a major
version number since the same headers are shared to export the 1.x and
2.x APIs (The only difference is that cogl-2.0.pc ensures that
-DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of
later versions is not precluded though since we can either continue
sharing or later add a major version suffix.