Commit Graph

149 Commits

Author SHA1 Message Date
Neil Roberts
2616ae0fa9 Add a GL 3 driver
This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When
requested, the GLX, EGL and SDL2 winsyss will set the necessary
attributes to request a forward-compatible core profile 3.1 context.
That means it will have no deprecated features.

To simplify the explosion of checks for specific combinations of
context->driver, many of these conditionals have now been replaced
with private feature flags that are checked instead. The GL and GLES
drivers now initialise these private feature flags depending on which
driver is used.

The fixed function backends now explicitly check whether the fixed
function private feature is available which means the GL3 driver will
fall back to always using the GLSL progend. Since Rob's latest patches
the GLSL progend no longer uses any fixed function API anyway so it
should just work.

The driver is currently lower priority than COGL_DRIVER_GL so it will
not be used unless it is specificly requested. We may want to change
this priority at some point because apparently Mesa can make some
memory savings if a core profile context is used.

In GL 3, getting the combined extensions string with glGetString is
deprecated so this patch changes it to use glGetStringi to build up an
array of extensions instead. _cogl_context_get_gl_extensions now
returns this array instead of trying to return a const string. The
caller is expected to free the array.

Some issues with this patch:

• GL 3 does not support GL_ALPHA format textures. We should probably
  make this a feature flag or something. Cogl uses this to render text
  which currently just throws a GL error and breaks so it's pretty
  important to do something about this before considering the GL3
  driver to be stable.

• GL 3 doesn't support client side vertex buffers. This probably
  doesn't matter because CoglBuffer won't normally use malloc'd
  buffers if VBOs are available, but it might but worth making
  malloc'd buffers a private feature and forcing it not to use them.

• GL 3 doesn't support the default vertex array object. This patch
  just makes it create and bind a single non-default vertex array
  object which gets used just like the normal default object. Ideally
  it would be good to use vertex array objects properly and attach
  them to a CoglPrimitive to cache the state.

Reviewed-by: Robert Bragg <robert@linux.intel.com>

(cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2013-01-22 17:48:01 +00:00
Robert Bragg
ae713a32d0 Adds a NOP driver
This adds a new "nop" driver that does nothing. This can be selected at
runtime either with the COGL_DRIVER=nop environment variable or by
passing COGL_DRIVER_NOP to cogl_renderer_set_driver()

Adding the nop driver gives us a way to test workloads without any
driver and hardware overheads which can help us understand how Cogl's
state tracking performs in isolation.

Having a nop driver can also serve as an shell/outline for creating
other drivers later.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 90587418233b6438290741d80aedf193ae660cad)
2013-01-22 17:47:59 +00:00
Robert Bragg
df21e20f65 Adds CoglError api
Although we use GLib internally in Cogl we would rather not leak GLib
api through Cogl's own api, except through explicitly namespaced
cogl_glib_ / cogl_gtype_ feature apis.

One of the benefits we see to not leaking GLib through Cogl's public API
is that documentation for Cogl won't need to first introduce the Glib
API to newcomers, thus hopefully lowering the barrier to learning Cogl.

This patch provides a Cogl specific typedef for reporting runtime errors
which by no coincidence matches the typedef for GError exactly.  If Cogl
is built with --enable-glib (default) then developers can even safely
assume that a CoglError is a GError under the hood.

This patch also enforces a consistent policy for when NULL is passed as
an error argument and an error is thrown. In this case we log the error
and abort the application, instead of silently ignoring it. In common
cases where nothing has been implemented to handle a particular error
and/or where applications are just printing the error and aborting
themselves then this saves some typing. This also seems more consistent
with language based exceptions which usually cause a program to abort if
they are not explicitly caught (which passing a non-NULL error signifies
in this case)

Since this policy for NULL error pointers is stricter than the standard
GError convention, there is a clear note in the documentation to warn
developers that are used to using the GError api.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46)

Note: Since we can't change the Cogl 1.x api the patch was changed to
not rename _error_quark() functions to be _error_domain() functions and
although it's a bit ugly, instead of providing our own CoglError type
that's compatible with GError we simply #define CoglError to GError
unless Cogl is built with glib disabled.

Note: this patch does technically introduce an API break since it drops
the cogl_error_get_type() symbol generated by glib-mkenum (Since the
CoglError enum was replaced by a CoglSystemError enum) but for now we
are assuming that this will not affect anyone currently using the Cogl
API. If this does turn out to be a problem in practice then we would be
able to fix this my manually copying an implementation of
cogl_error_get_type() generated by glib-mkenum into a compatibility
source file and we could also define the original COGL_ERROR_ enums for
compatibility too.

Note: another minor concern with cherry-picking this patch to the 1.14
branch is that an api scanner would be lead to believe that some APIs
have changed, and for example the gobject-introspection parser which
understands the semantics of GError will not understand the semantics of
CoglError. We expect most people that have tried to use
gobject-introspection with Cogl already understand though that it is not
well suited to generating bindings of the Cogl api anyway and we aren't
aware or anyone depending on such bindings for apis involving GErrors.
(GnomeShell only makes very-very minimal use of Cogl via the gjs
bindings for the cogl_rectangle and cogl_color apis.)

The main reason we have cherry-picked this patch to the 1.14 branch
even given the above concerns is that without it it would become very
awkward for us to cherry-pick other beneficial patches from master.
2013-01-22 17:47:39 +00:00
Robert Bragg
ce5d06afe1 framebuffer: split GL code out from cogl-framebuffer.c
This splits out most of the OpenGL specific code from cogl-framebuffer.c
into cogl-framebuffer-gl.c and extends the CoglDriverVtable interface
for cogl-framebuffer.c to use.

There are hopes to support several different backends for Cogl
eventually to hopefully get us closer to the metal so this makes some
progress in organizing which parts of Cogl are OpenGL specific so these
parts can potentially be switched out later.

The only remaining use of OpenGL still in cogl-framebuffer.c is to
handle cogl_framebuffer_read_pixels.
2013-01-18 10:53:29 +00:00
Robert Bragg
2942fd362d Avoid referencing file scope context in _context_new()
cogl_context_new() had a mixture of references to the file scope context
variable (_context) and the local (context) variable. This renames the
file scope variable to _cogl_context to catch unnecessary references to
the old name and fixes the code accordingly to reference the local
variable instead.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 33a9397ee1ae1729200be2e5084cf43cebb64289)
2012-09-17 23:06:20 +01:00
Neil Roberts
74fd618df9 Add conf vars to trick Cogl to think extensions are disabled
This adds two new configuration environment variables:

COGL_DISABLE_GL_EXTENSIONS and
COGL_OVERRIDE_GL_VERSION

The variables can also be set in the cogl.conf file using the same
names.

The first one is a list of GL extension names separated by commas.
When set Cogl will assume any extension listed here is not available
by removing it from the string returned from
glGetString(GL_EXTENSIONS). If the string is set in both the config
file and the environment variable then the union of the two lists will
be used.

The second overrides the value returned from glGetString(GL_VERSION).
If the string is set in both places the version from the environment
variable will take priority.

These are sometimes useful for debugging Cogl to test the various
combinations of extensions. It could also be useful to work around
driver bugs where an extension is badly supported and it would be
better not to use it.

The variables in cogl-config that just set a global char * variable
have been put together in an array instead of having a separate blob
of code for each one in order to make it simpler to add new variables.

Reviewed-by: Robert Bragg <robert@linux.intel.com>

(cherry picked from commit ec69c2dc576c78664e0b73879365cb7414ecf441)
2012-08-06 18:51:33 +01:00
Robert Bragg
010d16f647 Adds initial GLES2 integration support
This makes it possible to integrate existing GLES2 code with
applications using Cogl as the rendering api.

Currently all GLES2 usage is handled with separate GLES2 contexts to
ensure that GLES2 api usage doesn't interfere with Cogl's own use of
OpenGL[ES]. The api has been designed though so we can provide tighter
integration later.

The api would allow us to support GLES2 virtualized on top of an
OpenGL/GLX driver as well as GLES2 virtualized on the core rendering api
of Cogl itself. Virtualizing the GLES2 support on Cogl will allow us to
take advantage of Cogl debugging facilities as well as let us optimize
the cost of allocating multiple GLES2 contexts and switching between
them which can both be very expensive with many drivers.

As as a side effect of this patch Cogl can also now be used as a
portable window system binding API for GLES2 as an alternative to EGL.

Parts of this patch are based on work done by Tomeu Vizoso
<tomeu.vizoso@collabora.com> who did the first iteration of adding GLES2
API support to Cogl so that WebGL support could be added to
webkit-clutter.

This patch adds a very minimal cogl-gles2-context example that shows how
to create a gles2 context, clear the screen to a random color and also
draw a triangle with the cogl api.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 4bb6eff3dbd50d8fef7d6bdbed55c5aaa70036a8)
2012-08-06 14:27:42 +01:00
Robert Bragg
a945890de6 Workaround drisw bug where clipped redraws don't work
This detects when we are running on any of Mesa's software rasterizer
backends and disables use of glBlitFramebuffer and glXCopySubBuffer.
Both of these currently result in full-screen copies so there's little
point in using these to optimize how much of the screen we present.

To help ensure we re-evaluate this workaround periodically we have added
a comment marker of "ONGOING BUG" above the workaround and added a note
to our RELEASING document that says we should grep for this marker and
write a NEWS section about ongoing bug workarounds.

https://bugzilla.gnome.org/show_bug.cgi?id=674208

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 11f2f6ebb42398978ec8dd92b3c332ae8140a728)
2012-08-06 14:27:42 +01:00
Robert Bragg
e3d6bc36d3 Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.

Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.

The first node in a matrix-stack is always a LOAD_IDENTITY operation.

As an example consider if an application where to draw three rectangles
A, B and C something like this:

cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);

  cogl_framebuffer_translate (fb, 10, 0, 0);

  cogl_framebuffer_push_matrix(fb);

    cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
    cogl_framebuffer_draw_rectangle (...); /* A */

  cogl_framebuffer_pop_matrix(fb);

  cogl_framebuffer_draw_rectangle (...); /* B */

cogl_framebuffer_pop_matrix(fb);

cogl_framebuffer_push_matrix(fb);
  cogl_framebuffer_set_modelview_matrix (fb, &mv);
  cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);

That would result in a graph of nodes like this:

LOAD_IDENTITY
      |
    SCALE
    /     \
SAVE       LOAD
  |           |
TRANSLATE    RECTANGLE(C)
  |     \
SAVE    RECTANGLE(B)
  |
ROTATE
  |
RECTANGLE(A)

Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.

Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
  complete, immutable transformation that can be logged for example
  into a journal. Previously we were storing a full CoglMatrix in
  each journal entry which is 16 floats for the matrix itself as well
  as space for flags and another 16 floats for possibly storing a
  cache of the inverse. This means that we significantly reduce
  the size of the journal when drawing lots of primitives and we also
  avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
  (unlikely) false negatives are allowed simply comparing the pointers
  of two matrix stack graph entries is enough. Previously we would use
  memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
  for the common ancestry between nodes we can determine the operations
  that differentiate the transforms and use those to gain a high level
  understanding of the differences. For example we use this in the
  journal to be able to efficiently determine when two rectangle
  transforms only differ by some translation so that we can perform
  software clipping.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-08-06 14:27:40 +01:00
Robert Bragg
54735dec84 Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.

Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.

Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.

So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.

Instead of gsize we now use size_t

For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-08-06 14:27:39 +01:00
Robert Bragg
09642a83b5 Removes all remaining use of CoglHandle
Removing CoglHandle has been an on going goal for quite a long time now
and finally this patch removes the last remaining uses of the CoglHandle
type and the cogl_handle_ apis.

Since the big remaining users of CoglHandle were the cogl_program_ and
cogl_shader_ apis which have replaced with the CoglSnippets api this
patch removes both of these apis.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 6ed3aaf4be21d605a1ed3176b3ea825933f85cf0)

  Since the original patch was done after removing deprecated API
  this back ported patch doesn't affect deprecated API and so
  actually this cherry-pick doesn't remove all remaining use of
  CoglHandle as it did for the master branch of Cogl.
2012-08-06 14:27:39 +01:00
Robert Bragg
cc4c578887 fix cogl_context_new crash if fail to connect renderer
If a NULL display is passed to cogl_context_new() then it has to
implicitly create a CoglRenderer and CoglDisplay and propagate any
resulting errors back to the user. Previously the implementation relied
on passing a NULL renderer to cogl_display_new() as the means for
implicitly connecting to a renderer. The problem with this though is
that cogl_display_new() isn't designed to ever return NULL but if it
failed to connect to a renderer automatically it would do and then
cogl_context_new would pass NULL to cogl_display_setup() leading to a
crash.

This patch changes the implementation of cogl_context_new() to now
explicitly create a CoglRenderer and connect to it if a NULL display is
given. This way we can easily propagate any errors. In addition
cogl_display_new has been changed to abort if it fails to implicitly
connect to a renderer due to a NULL renderer argument.

An application needing to gracefully handle problems connecting to a
renderer at runtime should manually instantiate and connect a renderer
passing a GError argument to cogl_renderer_connect.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-04-11 12:26:52 +01:00
Neil Roberts
2037e0f4f1 Add a mechanism for determining GPU driver details
This adds a CoglGpuInfo struct to the CoglContext which contains some
enums describing the GL driver in use. This currently includes the
driver package (ie, is it Mesa) the version number of the package and
the vendor of the GPU (ie, is it by Intel). There is also a bitmask
which will contain the workarounds that we should do for that
particular driver configuration. The struct is initialised on context
creation by using a series of string comparisons on the strings
returned from glGetString.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-04-05 13:52:43 +01:00
Neil Roberts
c33ce5fc6b Use GL_ARB_sampler_objects
GL_ARB_sampler_objects provides a GL object which overrides the
sampler state part of a texture object with different values. The
sampler state that Cogl currently exposes is the wrap modes and
filters. Cogl exposes the state as part of the pipeline layer state
but without this extension GL only exposes it as part of the texture
object state. This means that it won't work to use a single texture
multiple times in one primitive with different sampler states. It also
makes switching between different sampler states with a single texture
not terribly efficient because it has to change the texture object
state every time.

This patch adds a cache for sampler states in a shared hash table
attached to the CoglContext. The entire set of parameters for the
sampler state is used as the key for the hash table. When a unique
state is encountered the sampler cache will create a new entry,
otherwise it will return a const pointer to an existing entry. That
means we can have a single pointer to represent any combination of
sampler state.

Pipeline layers now just store this single pointer rather than storing
all of the sampler state. The two separate state flags for wrap modes
and filters have now been combined into one. It should be faster to
compare the sampler state now because instead of comparing each value
it can just compare the pointers to the cached sampler entries. The
hash table of cached sampler states should only need to perform its
more expensive hash on the state when a property is changed on a
pipeline, not every time it is flushed.

When the sampler objects extension is available each cached sampler
state will also get a sampler object to represent it. The common code
to flush the GL state will now simply bind this object to a unit
instead of flushing the state though the CoglTexture when possible.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-04-05 13:47:36 +01:00
Neil Roberts
6197e3abf3 Add constructors which take a CoglBitmap to all primitive textures
This adds public constructors which take a CoglBitmap to all primitive
texture types. This constructor should be considered the canonical
constructor for initializing the texture with data because it should
be possible to wrap any type of data in a CoglBitmap. Having at least
this single constructor avoids the need to have an explosion of
constructors such as new_from_data, new_from_pixel_buffer and
new_from_file etc.

The already available internal bitmap constructor for CoglTexture2D
has had its flags parameter removed under the assumption that flags do
not make sense for primitive textures. The meta constructor
cogl_texture_new_from_bitmap now just explicitly calls set_auto_mipmap
after constructing the texture depending on the value of the
COGL_TEXTURE_NO_AUTO_MIPMAP flag.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-04-05 13:47:32 +01:00
Neil Roberts
e7df2dbf79 bitmap: Store a pointer to the context
This adds a context member to CoglBitmap which stores the context it
was created with. That way it can be used in texture constructors
which use a bitmap. There is also an internal private function to get
the context out of the bitmap which all of the texture constructors
now use. _cogl_texture_3d_new_from_bitmap has had its context
parameter removed so that it more closely matches the other bitmap
constructors.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-04-04 14:24:01 +01:00
Neil Roberts
60812e6a0e Add a vtable for the driver
Cogl already had a vtable for the texture driver. This ended up being
used for some things that are not strictly related to texturing such
as converting between pixel formats and GL enums. Some other functions
that are driver dependent such as updating the features were not
indirected through a vtable but instead switched directly by looking
at the ctx->driver enum value. This patch normalises to the two uses
by adding a separate vtable for driver functions not related to
texturing and moves the pixel format conversion functions to it from
the texture driver vtable. It also adds a context parameter to all of
the functions in the new driver vtable so that they won't have to rely
on the global context.
2012-03-23 13:51:08 +00:00
Neil Roberts
d18b59d9e6 Add a public cogl_bitmap_new_for_data
This creates a CoglBitmap which points into an existing buffer in
system memory. That way it can be used to create a texture or to read
pixel data into. The function replaces the existing internal function
_cogl_bitmap_new_from_data but removes the destroy notify call back.
If the application wants notification of destruction it can just use
the cogl_object_set_user_data function as normal. Internally there is
now a convenience function to create a bitmap for system memory and
automatically free the buffer using that mechanism.

The name of the function is inspired by
cairo_image_surface_create_for_data which has similar semantics.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-14 12:19:56 +00:00
Neil Roberts
b8df3561f4 Remove the point size cache on the context
I don't think there's really any point in this cache because the
pipeline code completely owns the point size state. Pipelines are
already compared for whether their point size state is different
before setting it so it shouldn't result in any extra calls to
glPointSize apart from maybe when the first pipeline is initially
flushed.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-07 15:13:29 +00:00
Robert Bragg
785e6375eb Adds a context arg to cogl_pipeline_new()
As we move towards Cogl 2.0 we are aiming to remove the need for a
default global CoglContext and so everything should be explicitly
related to a context somehow. CoglPipelines are top level objects and
so this patch adds a context argument to cogl_pipeline_new().

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-02-21 12:38:24 +00:00
Robert Bragg
47868e1f3e texture-3d: remove _EXP defines + CoglHandle and pass context
We are in the process of removing all _EXP suffix mangling for
experimental APIs (Ref: c6528c4b6c) and adding missing gtk-doc
comments so that we can instead rely on the "Stability: unstable"
markers in the gtk-doc comments. This patch tackles the cogl-texture-3d
api symbols.

This patch also replaces use of CoglHandle with a CoglTexture3D type
instead.

Finally this patch also ensures the CoglTexture3D constructors take an
explicit CoglContext pointer but not a CoglTextureFlags argument,
consistent with other CoglTexture constructors.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-02-21 12:37:44 +00:00
Robert Bragg
680f63a48c Remove all internal includes of cogl.h
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-02-20 23:12:45 +00:00
Robert Bragg
ee940a3d0d Move all types/prototypes from cogl.h -> cogl[1]-context.h
So we can get to the point where cogl.h is merely an aggregation of
header includes for the 1.x api this moves all the function prototypes
and type definitions into a cogl-context.h and a new cogl1-context.h.

Ideally no code internally should ever need to include cogl.h as it just
represents the public facing header for accessing the 1.x api which
should only be used by Clutter.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-02-20 23:12:44 +00:00
Neil Roberts
b96e6900f5 cogl-pipeline-layer: Use CoglTextureType instead of GL target enum
Instead of storing the GLenum for the target of the last used texture
for a layer it now stores the CoglTextureType instead. The state name
has been renamed to 'texture type' instead of 'texture target'.
Previously the default pipeline layer would store 0 here to represent
that there is no texture. This has been changed to store
COGL_TEXTURE_TYPE_2D instead which means that all pipeline layers
always have a valid value for the texture type. Any places that were
previously fetching the texture from a layer to determine the target
(for example when generating shaders or when enabling a particular
texture target) now use the texture type instead. This means they will
work even for layers that don't have a texture.

This also changes it so that when binding a fallback texture instead
of always using a 2D texture it will now use the default texture
corresponding to the texture type of the layer. That way when the
generated shader tries to do a texture lookup for that type of texture
it will get a valid texture object. To make this work the patch adds a
default texture for 3D textures to the context and also makes the
default rectangle texture actually be a rectangle texture instead of
using a 2D texture.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-02-13 17:09:34 +00:00
Neil Roberts
f005f517fe Flush matrices in the progend and flip with a vector
Previously flushing the matrices was performed as part of the
framebuffer state. When on GLES2 this matrix flushing is actually
diverted so that it only keeps a reference to the intended matrix
stack. This is necessary because on GLES2 there are no builtin
uniforms so it can't actually flush the matrices until the program for
the pipeline is generated. When the matrices are flushed it would
store the age of modifications on the matrix stack so that it could
detect when the matrix hasn't changed and avoid flushing it.

This patch changes it so that the pipeline is responsible for flushing
the matrices even when we are using the GL builtins. The same
mechanism for detecting unmodified matrix stacks is used in all
cases. There is a new CoglMatrixStackCache type which is used to store
a reference to the intended matrix stack along with its last flushed
age. There are now two of these attached to the CoglContext to track
the flushed state for the global matrix builtins and also two for each
glsl progend program state to track the flushed state for a
program. The framebuffer matrix flush now just updates the intended
matrix stacks without actually trying to flush.

When a vertex snippet is attached to the pipeline, the GLSL vertend
will now avoid using the projection matrix to flip the rendering. This
is necessary because any vertex snippet may cause the projection
matrix not to be used. Instead the flip is done as a forced final step
by multiplying cogl_position_out by a vec4 uniform. This uniform is
updated as part of the progend pre_paint depending on whether the
framebuffer is offscreen or not.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-12-06 19:02:06 +00:00
Robert Bragg
7283e0a49c rework enabling of attributes, removing _cogl_enable()
This removes the limited caching of enabled attributes done by
_cogl_enable() and replaces it with a more generalized set of bitmasks
associated with the context that allow us to efficiently compare the set
of attribute locations that are currently enabled vs the new locations
that need enabling so we only have to inform OpenGL of the changes in
which locations are enabled/disabled.

This also adds a per-context hash table for mapping attribute names to
global name-state structs which includes a unique name-index for any
name as well as pre-validated information about builtin "cogl_"
attribute names including whether the attribute is normalized and what
texture unit a texture attribute corresponds too.

The name-state hash table means that cogl_attribute_new() now only needs
to validate names the first time they are seen.

CoglAttributes now reference a name-state structure instead of just the
attribute name, so now we can efficiently get the name-index for any
attribute and we can use that to index into a per-glsl-program cache
that maps name indices to real GL attribute locations so when we get
asked to draw a set of attributes we can very quickly determine what GL
attributes need to be setup and enabled. If we don't have a cached
location though we can still quickly access the string name so we can
query OpenGL.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-12-06 18:51:57 +00:00
Robert Bragg
042dc7c8cd framebuffer: Optimize _cogl_framebuffer_flush_state()
Previously the cost of _cogl_framebuffer_state_flush() would always
scale by the total amount of state tracked by CoglFramebuffer even in
cases where we knew up-front that we only wanted to flush a subset of
the state or in cases where we requested to flush the same framebuffer
multiple times with no changes being made to the framebuffer.

We now track a set of state changed flags with each framebuffer and
track the current read/draw buffers as part of the CoglContext so that
we can quickly bail out when asked to flush the same framebuffer
multiple times with no changes.

_cogl_framebuffer_flush_state() now takes a mask of the state that we
want to flush and the implementation has been redesigned so that the
cost of checking what needs to be flushed and flushing those changes
now scales by how much state we actually plan to update.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-12-06 18:51:57 +00:00
Neil Roberts
c269817edd cogl-pipeline: Use a hash table for faster uniform name lookup
The uniform names are now stored in a GPtrArray instead of a linked
list. There is also a hash table to speed up converting names to
locations.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-16 16:32:11 +00:00
Neil Roberts
4553ca0695 cogl-pipeline: Add support for setting uniform values
This adds the following new public experimental functions to set
uniform values on a CoglPipeline:

void
cogl_pipeline_set_uniform_1f (CoglPipeline *pipeline,
                              int uniform_location,
                              float value);
void
cogl_pipeline_set_uniform_1i (CoglPipeline *pipeline,
                              int uniform_location,
                              int value);
void
cogl_pipeline_set_uniform_float (CoglPipeline *pipeline,
                                 int uniform_location,
                                 int n_components,
                                 int count,
                                 const float *value);
void
cogl_pipeline_set_uniform_int (CoglPipeline *pipeline,
                               int uniform_location,
                               int n_components,
                               int count,
                               const int *value);
void
cogl_pipeline_set_uniform_matrix (CoglPipeline *pipeline,
                                  int uniform_location,
                                  int dimensions,
                                  int count,
                                  gboolean transpose,
                                  const float *value);

These are similar to the old functions used to set uniforms on a
CoglProgram. To get a value to pass in as the uniform_location there
is also:

int
cogl_pipeline_get_uniform_location (CoglPipeline *pipeline,
                                    const char *uniform_name);

Conceptually the uniform locations are tied to the pipeline so that
whenever setting a value for a new pipeline the application is
expected to call this function. However in practice the uniform
locations are global to the CoglContext. The names are stored in a
linked list where the position in the list is the uniform location.

The global indices are used so that each pipeline can store a mask of
which uniforms it overrides. That way it is quicker to detect which
uniforms are different from the last pipeline that used the same
CoglProgramState so it can avoid flushing uniforms that haven't
changed. Currently the values are not actually compared which means
that it will only avoid flushing a uniform if there is a common
ancestor that sets the value (or if the same pipeline is being flushed
again - in which case the pipeline and its common ancestor are the
same thing).

The uniform values are stored in the big state of the pipeline as a
sparse linked list. A bitmask stores which values have been overridden
and only overridden values are stored in the linked list.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-16 16:32:11 +00:00
Neil Roberts
39ca3e51df Don't take a reference to the last used onscreen framebuffer
Cogl keeps a pointer to the last used onscreen framebuffer from the
context to implement the deprecated cogl_set_draw_buffer function
which can take COGL_WINDOW_BUFFER as the target to use the last
onscreen buffer. Previously this would also take a reference to that
pointer. However that was causing a circular reference between the
framebuffer and the context which makes it impossible to clean up
resources properly when onscreen buffers are used. This patch instead
changes it to just store the pointer and then clear the pointer during
_cogl_onscreen_free as a kind of cheap weak reference.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-14 18:40:28 +00:00
Neil Roberts
1566941c2f cogl-context: Destroy texture units later on
This patch moves the call to _cogl_destroy_texture_units() from
_cogl_context_free() to later on. When destroying a GL texture the
texture units are checked. This would end up accessing invalid memory
so we need to try to destroy the texture units only after everything
that might be referencing a texture has been destroyed.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-04 13:03:01 +00:00
Robert Bragg
b72f255c0a Start to reduce dependence on glib
Since we've had several developers from admirable projects say they
would like to use Cogl but would really prefer not to pull in
gobject,gmodule and glib as extra dependencies we are investigating if
we can get to the point where glib is only an optional dependency.
Actually we feel like we only make minimal use of glib anyway, so it may
well be quite straightforward to achieve this.

This adds a --disable-glib configure option that can be used to disable
features that depend on glib.

Actually --disable-glib doesn't strictly disable glib at this point
because it's more helpful if cogl continues to build as we make
incremental progress towards this.

The first use of glib that this patch tackles is the use of
g_return_val_if_fail and g_return_if_fail which have been replaced with
equivalent _COGL_RETURN_VAL_IF_FAIL and _COGL_RETURN_IF_FAIL macros.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-11-01 12:03:02 +00:00
Robert Bragg
79719347c8 framebuffer: split out CoglOnscreen code
This factors out the CoglOnscreen code from cogl-framebuffer.c so we now
have cogl-onscreen.c, cogl-onscreen.h and cogl-onscreen-private.h.
Notably some of the functions pulled out are currently namespaced as
cogl_framebuffer but we know we are planning on renaming them to be in
the cogl_onscreen namespace; such as cogl_framebuffer_swap_buffers().

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-11-01 12:03:02 +00:00
Robert Bragg
426c8b8f41 features: Support more than 32 features!
Currently features are represented as bits in a 32bit mask so we
obviously can't have more than 32 features with that approach. The new
approach is to use the COGL_FLAGS_ macros which lets us handle bitmasks
without a size limit and we change the public api to accept individual
feature enums instead of a mask. This way there is no limit on the
number of features we can add to Cogl.

Instead of using cogl_features_available() there is a new
cogl_has_feature() function and for checking multiple features there is
cogl_has_features() which takes a zero terminated vararg list of
features.

In addition to being able to check for individual features this also
adds a way to query all the features currently available via
cogl_foreach_feature() which will call a callback for each feature.

Since the new functions take an explicit context pointer there is also
no longer any ambiguity over when users can first start to query
features.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-11-01 12:03:01 +00:00
Robert Bragg
c86f698eb9 make COGL_FEATURE_VBOS a private feature
Cogl provides a consistent public interface regardless of whether the
underlying GL driver supports VBOs so it doesn't make much sense to have
this feature as part of the public api.  We can't break the api by
removing the enum but at least we no longer ever set the feature flag.

We now have a replacement private feature flag COGL_PRIVATE_FEATURE_VBOS
which cogl now checks for internally.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-11-01 12:03:01 +00:00
Robert Bragg
69b44ac86d make COGL_FEATURE_PBOS a private feature
Cogl provides a consistent public interface regardless of whether the
underlying GL driver supports PBOs so it doesn't make much sense to have
this feature as part of the public api.  We can't break the api by
removing the enum but at least we no longer ever set the feature flag.

We now have a replacement private feature flag COGL_PRIVATE_FEATURE_PBOS
which cogl now checks for internally.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-11-01 12:03:01 +00:00
Robert Bragg
30f8521790 pipeline: optimize _compare_differences functions
This optimizes the layer and pipeline _compare_differences functions so
neither of them use the GArray api since building up the list of
ancestors by appending to a shared GArray was showing quite high on
profiles due to how frequently pipeline comparisons are made. Instead
we now build up a transient, singly linked list by allocating GList
nodes via alloca to build up the parallel lists of ancestors.

This tweaked approach actually ends up being a bit more concise than
before, we avoid the overhead of the GArray api and now avoid making any
function calls while comparing (assuming the _get_parent() calls always
inline), we avoiding needing to get the default cogl context.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-09-21 17:28:32 +01:00
Robert Bragg
4c3dadd35e Add a strong CoglTexture type to replace CoglHandle
As part of the on going, incremental effort to purge the non type safe
CoglHandle type from the Cogl API this patch tackles most of the
CoglHandle uses relating to textures.

We'd postponed making this change for quite a while because we wanted to
have a clearer understanding of how we wanted to evolve the texture APIs
towards Cogl 2.0 before exposing type safety here which would be
difficult to change later since it would imply breaking APIs.

The basic idea that we are steering towards now is that CoglTexture
can be considered to be the most primitive interface we have for any
object representing a texture. The texture interface would provide
roughly these methods:

  cogl_texture_get_width
  cogl_texture_get_height
  cogl_texture_can_repeat
  cogl_texture_can_mipmap
  cogl_texture_generate_mipmap;
  cogl_texture_get_format
  cogl_texture_set_region
  cogl_texture_get_region

Besides the texture interface we will then start to expose types
corresponding to specific texture types: CoglTexture2D,
CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and
CoglTexturePixmapX11.

We will then also expose an interface for the high-level texture types
we have (such as CoglTexture2DSlice, CoglSubTexture and
CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an
additional interface that lets you iterate a virtual region of a meta
texture and get mappings of primitive textures to sub-regions of that
virtual region. Internally we already have this kind of abstraction for
dealing with sliced texture, sub-textures and atlas textures in a
consistent way, so this will just make that abstraction public. The aim
here is to clarify that there is a difference between primitive textures
(CoglTexture2D/3D) and some of the other high-level textures, and also
enable developers to implement primitives that can support meta textures
since they can only be used with the cogl_rectangle API currently.

The thing that's not so clean-cut with this are the texture constructors
we have currently; such as cogl_texture_new_from_file which no longer
make sense when CoglTexture is considered to be an interface.  These
will basically just become convenient factory functions and it's just a
bit unusual that they are within the cogl_texture namespace.  It's worth
noting here that all the texture type APIs will also have their own type
specific constructors so these functions will only be used for the
convenience of being able to create a texture without really wanting to
know the details of what type of texture you need.  Longer term for 2.0
we may come up with replacement names for these factory functions or the
other thing we are considering is designing some asynchronous factory
functions instead since it's so often detrimental to application
performance to be blocked waiting for a texture to be uploaded to the
GPU.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-09-21 15:27:03 +01:00
Neil Roberts
dbff3a357e Make backface culling be part of the legacy state
This adds an internal function to set the backface culling state on a
pipeline. This includes properties to set the culling mode (front,
back or both) and also to set which face is considered the front
(COGL_WINDING_CLOCKWISE or COGL_WINDING_COUNTER_CLOCKWISE). The actual
front face flushed to GL depends on whether we are rendering to an
offscreen buffer or not. This means that when changing between on- and
off- screen framebuffers it now checks whether the last flushed
pipeline has backface culling enabled and forces a reflush of the cull
face state if so.

The backface culling is now set on a pipeline as part of the legacy
state. This is important because some code in Cogl assumes it can
flush a temporary pipeline to revert to a known state, but previously
this wouldn't disable backface culling so things such as flushing the
clip stack could get confused.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-09-19 16:40:07 +01:00
Neil Roberts
879ce7301a cogl-framebuffer: Force flushing the color mask when changing fbs
When changing between two framebuffers that have different color masks
it now forces the pipeline to flush the mask by setting
current_pipeline_changes_since_flush. For this to work there needs to
be a common bit of code that gets called when the framebuffers are
changed that has access to both the old framebuffer and the new
framebuffer. _cogl_set_framebuffers_real can't be used for this
because when it is called from cogl_pop_framebuffer the stack entries
have already changed so it can't know the old framebuffer. This patch
adds a new function called notify_buffers_changed which should get
called whenever the buffers are changed and it explicitly gets passed
pointers to the old and new buffers. cogl_pop_framebuffer now calls
this instead of trying to use _cogl_set_framebuffers_real to force a
flush.

This patch also fixes the ctx->window_buffer pointer. Previously this
was implemented by searching in the framebuffer stack for an onscreen
framebuffer whenever the current buffers are changed. However it does
this after the stack has already changed so it won't usually find the
right buffer.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-09-19 16:40:07 +01:00
Damien Lespiau
6584c183f0 context: Add an accessor to get display associated with the context
https://bugzilla.gnome.org/show_bug.cgi?id=657347

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-09-05 17:54:46 +01:00
Damien Lespiau
4e1d08d59e pipeline: Remove unsused get_max_texture_image_units()
This function was not used in the opengl pipeline, probably because of
the more precise get_max_activable_texture_units().

Remove it then.

https://bugzilla.gnome.org/show_bug.cgi?id=657347

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-09-05 17:54:46 +01:00
Kirk A. Baker
76c88958b7 Fixed uninitialized data (current_clip_stack_valid) in context creation
Reviewed-By: Robert Bragg <robert@linux.intel.com>
2011-07-27 15:55:27 +01:00
Robert Bragg
8b34a39319 Adds ColorMask support to Cogl
This adds CoglPipeline and CoglFramebuffer support for setting a color
mask which is a bit mask defining which color channels should be written
to the current framebuffer.

The final color mask is the intersection of the framebuffer color mask
and the pipeline color mask. The framebuffer mask affects all rendering
to the framebuffer while the pipeline masks can be used to affect
individual primitives.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-07-19 19:27:09 +01:00
Neil Roberts
231be91fb0 Combine _cogl_context_check_gl_version and update_features into one
The _cogl_context_check_gl_version function is meant to be called once
Cogl has a GL context so that it can check whether the context found
is supported by Cogl. However, only the stub winsys was calling this
and it was doing it before Cogl had a chance to retrieve the function
pointer for glString so it would just crash. This patch combines the
two functions into one so that _cogl_context_update_features returns a
gboolean and a GError. Then it can just check the context itself.

https://bugzilla.gnome.org/show_bug.cgi?id=654440

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-07-18 15:41:35 +01:00
Robert Bragg
3ed8c8d0ba framebuffer: Add dither_enabled getter/setters
This adds a getter and setter for requesting dithering to be enabled.

Dithering is a hardware dependent technique to increase the visible
color resolution beyond what the underlying hardware supports by playing
tricks with the colors placed into the framebuffer to give the illusion
of other colors. (For example this can be compared to half-toning used
by some news papers to show varying levels of grey even though their may
only be black and white are available).

The results of enabling dithering are platform dependent and may have no
effect.

Signed-off-by: Neil Roberts <neil@linux.intel.com>
2011-07-13 19:06:19 +01:00
Neil Roberts
461bff1867 fragend-arbfp: Move the pipeline cache to a separate file
The pipeline cache is now handled in CoglPipelineCache instead of
directly in the ARBfp fragend. The flags needed to hash a pipeline
should be exactly the same for the ARBfp and GLSL fragends so it's
convenient to share the code. The hash table now stores the actual
pipeline as the value instead of the private data so that the two
fragends can attach their data to it. That way it's possible to use
the same pipeline key with ancestors that are using different
fragends.

The hash table is created with g_hash_table_new_full to set a
destructor for the key and value and there is a destructor for
CoglPipelineCache that gets called when the CoglContext is
destroyed. That way we no longer leak the pipelines and shader state
when the context is desroyed.
2011-07-13 12:30:07 +01:00
Robert Bragg
c3b91da414 fix namespace for cogl_context_egl_get_egl_context
This renames cogl_context_egl_get_egl_context to
cogl_egl_context_get_egl_context to be consistent with other platform
specific APIs.

Signed-off-by: Neil Roberts <neil@linux.intel.com>
2011-07-11 14:07:02 +01:00
Robert Bragg
09e7174b1d Remove cogl_context_set_default API
For cogl 2.0 we don't want to have a default context. In the meantime
we can simply assume that calling cogl_context_new() implicitly
sets that context as the default context before returning.

Signed-off-by: Neil Roberts <neil@linux.intel.com>
2011-07-11 14:07:02 +01:00
Neil Roberts
b2e735ff7f Dynamically load the GL or GLES library
The GL or GLES library is now dynamically loaded by the CoglRenderer
so that it can choose between GL, GLES1 and GLES2 at runtime. The
library is loaded by the renderer because it needs to be done before
calling eglInitialize. There is a new environment variable called
COGL_DRIVER to choose between gl, gles1 or gles2.

The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have
been changed so that they don't assume the ifdefs are mutually
exclusive. They haven't been removed entirely so that it's possible to
compile the GLES backends without the the enums from the GL headers.

When using GLX the winsys additionally dynamically loads libGL because
that also contains the GLX API. It can't be linked in directly because
that would probably conflict with the GLES API if the EGL is
selected. When compiling with EGL support the library links directly
to libEGL because it doesn't contain any GL API so it shouldn't have
any conflicts.

When building for WGL or OSX Cogl still directly links against the GL
API so there is a #define in config.h so that Cogl won't try to dlopen
the library.

Cogl-pango previously had a #ifdef to detect when the GL backend is
used so that it can sneakily pass GL_QUADS to
cogl_vertex_buffer_draw. This is now changed so that it queries the
CoglContext for the backend. However to get this to work Cogl now
needs to export the _cogl_context_get_default symbol and cogl-pango
needs some extra -I flags to so that it can include
cogl-context-private.h
2011-07-11 12:57:38 +01:00