2009-02-24 13:51:25 -05:00
|
|
|
/*
|
2009-04-27 10:48:12 -04:00
|
|
|
* Cogl
|
2009-02-24 13:51:25 -05:00
|
|
|
*
|
2009-04-27 10:48:12 -04:00
|
|
|
* An object oriented GL/GLES Abstraction/Utility Layer
|
2009-02-24 13:51:25 -05:00
|
|
|
*
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
* Copyright (C) 2009,2010,2012 Intel Corporation.
|
2009-02-24 13:51:25 -05:00
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
2010-12-10 06:34:02 -05:00
|
|
|
* License along with this library. If not, see
|
|
|
|
* <http://www.gnu.org/licenses/>.
|
2010-03-01 07:56:10 -05:00
|
|
|
*
|
|
|
|
*
|
2009-04-27 10:48:12 -04:00
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Havoc Pennington <hp@pobox.com> for litl
|
2010-12-10 06:34:02 -05:00
|
|
|
* Robert Bragg <robert@linux.intel.com>
|
2009-02-24 13:51:25 -05:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __COGL_MATRIX_STACK_H
|
|
|
|
#define __COGL_MATRIX_STACK_H
|
|
|
|
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
#include "cogl-object-private.h"
|
Intial Re-layout of the Cogl source code and introduction of a Cogl Winsys
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
2009-07-27 21:02:02 -04:00
|
|
|
#include "cogl-matrix.h"
|
2011-11-21 09:22:01 -05:00
|
|
|
#include "cogl-context.h"
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
#include "cogl-framebuffer.h"
|
2009-02-24 13:51:25 -05:00
|
|
|
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
typedef enum _CoglMatrixOp
|
|
|
|
{
|
|
|
|
COGL_MATRIX_OP_LOAD_IDENTITY,
|
|
|
|
COGL_MATRIX_OP_TRANSLATE,
|
|
|
|
COGL_MATRIX_OP_ROTATE,
|
|
|
|
COGL_MATRIX_OP_SCALE,
|
|
|
|
COGL_MATRIX_OP_MULTIPLY,
|
|
|
|
COGL_MATRIX_OP_LOAD,
|
|
|
|
COGL_MATRIX_OP_SAVE,
|
|
|
|
} CoglMatrixOp;
|
|
|
|
|
|
|
|
typedef struct _CoglMatrixEntry CoglMatrixEntry;
|
2009-02-24 13:51:25 -05:00
|
|
|
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
struct _CoglMatrixEntry
|
2011-11-29 09:21:07 -05:00
|
|
|
{
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
CoglMatrixOp op;
|
|
|
|
CoglMatrixEntry *parent;
|
|
|
|
unsigned int ref_count;
|
2011-11-29 09:21:07 -05:00
|
|
|
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
/* used for performance tracing */
|
|
|
|
int composite_gets;
|
|
|
|
};
|
2010-01-04 06:58:32 -05:00
|
|
|
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
typedef struct _CoglMatrixEntryTranslate
|
|
|
|
{
|
|
|
|
CoglMatrixEntry _parent_data;
|
|
|
|
|
|
|
|
float x;
|
|
|
|
float y;
|
|
|
|
float z;
|
|
|
|
|
|
|
|
} CoglMatrixEntryTranslate;
|
|
|
|
|
|
|
|
typedef struct _CoglMatrixEntryRotate
|
|
|
|
{
|
|
|
|
CoglMatrixEntry _parent_data;
|
|
|
|
|
|
|
|
float angle;
|
|
|
|
float x;
|
|
|
|
float y;
|
|
|
|
float z;
|
|
|
|
|
|
|
|
} CoglMatrixEntryRotate;
|
|
|
|
|
|
|
|
typedef struct _CoglMatrixEntryScale
|
|
|
|
{
|
|
|
|
CoglMatrixEntry _parent_data;
|
|
|
|
|
|
|
|
float x;
|
|
|
|
float y;
|
|
|
|
float z;
|
|
|
|
|
|
|
|
} CoglMatrixEntryScale;
|
|
|
|
|
|
|
|
typedef struct _CoglMatrixEntryMultiply
|
|
|
|
{
|
|
|
|
CoglMatrixEntry _parent_data;
|
|
|
|
|
|
|
|
CoglMatrix *matrix;
|
|
|
|
|
|
|
|
} CoglMatrixEntryMultiply;
|
|
|
|
|
|
|
|
typedef struct _CoglMatrixEntryLoad
|
|
|
|
{
|
|
|
|
CoglMatrixEntry _parent_data;
|
|
|
|
|
|
|
|
CoglMatrix *matrix;
|
|
|
|
|
|
|
|
} CoglMatrixEntryLoad;
|
|
|
|
|
|
|
|
typedef struct _CoglMatrixEntrySave
|
|
|
|
{
|
|
|
|
CoglMatrixEntry _parent_data;
|
|
|
|
|
|
|
|
CoglBool cache_valid;
|
|
|
|
CoglMatrix *cache;
|
|
|
|
|
|
|
|
} CoglMatrixEntrySave;
|
|
|
|
|
|
|
|
typedef union _CoglMatrixEntryFull
|
|
|
|
{
|
|
|
|
CoglMatrixEntry any;
|
|
|
|
CoglMatrixEntryTranslate translate;
|
|
|
|
CoglMatrixEntryRotate rotae;
|
|
|
|
CoglMatrixEntryScale scale;
|
|
|
|
CoglMatrixEntryMultiply multiply;
|
|
|
|
CoglMatrixEntryLoad load;
|
|
|
|
CoglMatrixEntrySave save;
|
|
|
|
} CoglMatrixEntryFull;
|
|
|
|
|
|
|
|
typedef struct _CoglMatrixStack
|
|
|
|
{
|
|
|
|
CoglObject _parent;
|
|
|
|
|
|
|
|
CoglMatrixEntry *last_entry;
|
|
|
|
} CoglMatrixStack;
|
|
|
|
|
|
|
|
typedef struct _CoglMatrixEntryCache
|
|
|
|
{
|
|
|
|
CoglMatrixEntry *entry;
|
|
|
|
CoglBool flushed_identity;
|
|
|
|
CoglBool flipped;
|
|
|
|
} CoglMatrixEntryCache;
|
2010-12-06 07:31:51 -05:00
|
|
|
|
2010-12-10 06:34:02 -05:00
|
|
|
CoglMatrixStack *
|
|
|
|
_cogl_matrix_stack_new (void);
|
2009-10-26 13:51:34 -04:00
|
|
|
|
2010-12-10 06:34:02 -05:00
|
|
|
void
|
|
|
|
_cogl_matrix_stack_push (CoglMatrixStack *stack);
|
|
|
|
|
|
|
|
void
|
|
|
|
_cogl_matrix_stack_pop (CoglMatrixStack *stack);
|
|
|
|
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
void
|
|
|
|
_cogl_matrix_entry_identity_init (CoglMatrixEntry *entry);
|
|
|
|
|
2010-12-10 06:34:02 -05:00
|
|
|
void
|
|
|
|
_cogl_matrix_stack_load_identity (CoglMatrixStack *stack);
|
|
|
|
|
|
|
|
void
|
|
|
|
_cogl_matrix_stack_scale (CoglMatrixStack *stack,
|
|
|
|
float x,
|
|
|
|
float y,
|
|
|
|
float z);
|
|
|
|
void
|
|
|
|
_cogl_matrix_stack_translate (CoglMatrixStack *stack,
|
|
|
|
float x,
|
|
|
|
float y,
|
|
|
|
float z);
|
|
|
|
void
|
|
|
|
_cogl_matrix_stack_rotate (CoglMatrixStack *stack,
|
|
|
|
float angle,
|
|
|
|
float x,
|
|
|
|
float y,
|
|
|
|
float z);
|
|
|
|
void
|
|
|
|
_cogl_matrix_stack_multiply (CoglMatrixStack *stack,
|
|
|
|
const CoglMatrix *matrix);
|
|
|
|
void
|
|
|
|
_cogl_matrix_stack_frustum (CoglMatrixStack *stack,
|
|
|
|
float left,
|
|
|
|
float right,
|
|
|
|
float bottom,
|
|
|
|
float top,
|
|
|
|
float z_near,
|
|
|
|
float z_far);
|
|
|
|
void
|
|
|
|
_cogl_matrix_stack_perspective (CoglMatrixStack *stack,
|
|
|
|
float fov_y,
|
|
|
|
float aspect,
|
|
|
|
float z_near,
|
|
|
|
float z_far);
|
|
|
|
void
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
_cogl_matrix_stack_orthographic (CoglMatrixStack *stack,
|
|
|
|
float x_1,
|
|
|
|
float y_1,
|
|
|
|
float x_2,
|
|
|
|
float y_2,
|
|
|
|
float near,
|
|
|
|
float far);
|
|
|
|
|
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
|
|
|
CoglBool
|
2010-12-10 06:34:02 -05:00
|
|
|
_cogl_matrix_stack_get_inverse (CoglMatrixStack *stack,
|
|
|
|
CoglMatrix *inverse);
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
|
|
|
|
/* NB: This function only *sometimes* returns a pointer to a matrix if
|
|
|
|
* the matrix returned didn't need to be composed of multiple
|
|
|
|
* operations */
|
|
|
|
CoglMatrix *
|
2010-12-10 06:34:02 -05:00
|
|
|
_cogl_matrix_stack_get (CoglMatrixStack *stack,
|
|
|
|
CoglMatrix *matrix);
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
|
|
|
|
/* NB: This function only *sometimes* returns a pointer to a matrix if
|
|
|
|
* the matrix returned didn't need to be composed of multiple
|
|
|
|
* operations */
|
|
|
|
CoglMatrix *
|
|
|
|
_cogl_matrix_entry_get (CoglMatrixEntry *entry,
|
|
|
|
CoglMatrix *matrix);
|
|
|
|
|
2010-12-10 06:34:02 -05:00
|
|
|
void
|
|
|
|
_cogl_matrix_stack_set (CoglMatrixStack *stack,
|
|
|
|
const CoglMatrix *matrix);
|
2011-11-29 09:21:07 -05:00
|
|
|
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
CoglBool
|
|
|
|
_cogl_matrix_entry_calculate_translation (CoglMatrixEntry *entry0,
|
|
|
|
CoglMatrixEntry *entry1,
|
|
|
|
float *x,
|
|
|
|
float *y,
|
|
|
|
float *z);
|
2010-12-10 06:34:02 -05:00
|
|
|
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
/* If this returns TRUE then the entry is definitely the identity
|
|
|
|
* matrix. If it returns FALSE it may or may not be the identity
|
|
|
|
* matrix but no expensive comparison is performed to verify it. */
|
|
|
|
CoglBool
|
|
|
|
_cogl_matrix_entry_has_identity_flag (CoglMatrixEntry *entry);
|
2010-12-10 06:13:09 -05:00
|
|
|
|
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
|
|
|
CoglBool
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
_cogl_matrix_entry_fast_equal (CoglMatrixEntry *entry0,
|
|
|
|
CoglMatrixEntry *entry1);
|
2010-12-10 12:42:39 -05:00
|
|
|
|
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
|
|
|
CoglBool
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
_cogl_matrix_entry_equal (CoglMatrixEntry *entry0,
|
|
|
|
CoglMatrixEntry *entry1);
|
|
|
|
|
|
|
|
void
|
|
|
|
_cogl_matrix_entry_print (CoglMatrixEntry *entry);
|
|
|
|
|
|
|
|
CoglMatrixEntry *
|
|
|
|
_cogl_matrix_entry_ref (CoglMatrixEntry *entry);
|
|
|
|
|
|
|
|
void
|
|
|
|
_cogl_matrix_entry_unref (CoglMatrixEntry *entry);
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
COGL_MATRIX_MODELVIEW,
|
|
|
|
COGL_MATRIX_PROJECTION,
|
|
|
|
COGL_MATRIX_TEXTURE
|
|
|
|
} CoglMatrixMode;
|
|
|
|
|
|
|
|
void
|
|
|
|
_cogl_matrix_entry_flush_to_gl_builtins (CoglContext *ctx,
|
|
|
|
CoglMatrixEntry *entry,
|
|
|
|
CoglMatrixMode mode,
|
|
|
|
CoglFramebuffer *framebuffer,
|
|
|
|
CoglBool disable_flip);
|
2011-11-21 10:49:58 -05:00
|
|
|
|
2011-11-29 09:21:07 -05:00
|
|
|
void
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
_cogl_matrix_entry_cache_init (CoglMatrixEntryCache *cache);
|
2011-11-29 09:21:07 -05:00
|
|
|
|
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
|
|
|
CoglBool
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
_cogl_matrix_entry_cache_maybe_update (CoglMatrixEntryCache *cache,
|
|
|
|
CoglMatrixEntry *entry,
|
|
|
|
CoglBool flip);
|
2011-11-29 09:21:07 -05:00
|
|
|
|
|
|
|
void
|
Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-02-20 10:59:48 -05:00
|
|
|
_cogl_matrix_entry_cache_destroy (CoglMatrixEntryCache *cache);
|
2011-11-29 09:21:07 -05:00
|
|
|
|
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
|
|
|
CoglBool
|
2012-03-06 13:21:28 -05:00
|
|
|
_cogl_is_matrix_stack (void *object);
|
|
|
|
|
2009-02-24 13:51:25 -05:00
|
|
|
#endif /* __COGL_MATRIX_STACK_H */
|