mutter/common/cogl-primitives.c

1870 lines
55 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl.h"
#include "cogl-internal.h"
#include "cogl-context.h"
#include "cogl-texture-private.h"
#include "cogl-material-private.h"
#include "cogl-vertex-buffer-private.h"
#include <string.h>
#include <gmodule.h>
#include <math.h>
#define _COGL_MAX_BEZ_RECURSE_DEPTH 16
#ifdef HAVE_COGL_GL
#define glClientActiveTexture ctx->pf_glClientActiveTexture
#endif
/* these are defined in the particular backend */
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
void _cogl_path_add_node (gboolean new_sub_path,
float x,
float y);
void _cogl_path_fill_nodes ();
void _cogl_path_stroke_nodes ();
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
static void
_cogl_journal_flush_quad_batch (CoglJournalEntry *batch_start,
gint batch_len,
GLfloat *vertex_pointer)
{
gsize stride;
int i;
gulong enable_flags = 0;
guint32 disable_mask;
int prev_n_texcoord_arrays_enabled;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* XXX NB:
* Our vertex data is arranged as follows:
* 4 vertices per quad: 2 GLfloats per position,
* 2 GLfloats per tex coord * n_layers
*/
stride = 2 + 2 * batch_start->n_layers;
stride *= sizeof (GLfloat);
disable_mask = (1 << batch_start->n_layers) - 1;
disable_mask = ~disable_mask;
_cogl_material_flush_gl_state (ctx->source_material,
COGL_MATERIAL_FLUSH_FALLBACK_MASK,
batch_start->fallback_mask,
COGL_MATERIAL_FLUSH_DISABLE_MASK,
disable_mask,
/* Redundant when dealing with unsliced
* textures but does no harm... */
COGL_MATERIAL_FLUSH_LAYER0_OVERRIDE,
batch_start->layer0_override_texture,
NULL);
for (i = 0; i < batch_start->n_layers; i++)
{
GE (glClientActiveTexture (GL_TEXTURE0 + i));
GE (glEnableClientState (GL_TEXTURE_COORD_ARRAY));
GE (glTexCoordPointer (2, GL_FLOAT, stride, vertex_pointer + 2 + 2 * i));
}
prev_n_texcoord_arrays_enabled =
ctx->n_texcoord_arrays_enabled;
ctx->n_texcoord_arrays_enabled = batch_start->n_layers;
for (; i < prev_n_texcoord_arrays_enabled; i++)
{
GE (glClientActiveTexture (GL_TEXTURE0 + i));
GE (glDisableClientState (GL_TEXTURE_COORD_ARRAY));
}
/* FIXME: This api is a bit yukky, ideally it will be removed if we
* re-work the cogl_enable mechanism */
enable_flags |= _cogl_material_get_cogl_enable_flags (ctx->source_material);
if (ctx->enable_backface_culling)
enable_flags |= COGL_ENABLE_BACKFACE_CULLING;
enable_flags |= COGL_ENABLE_VERTEX_ARRAY;
cogl_enable (enable_flags);
GE (glVertexPointer (2, GL_FLOAT, stride, vertex_pointer));
_cogl_current_matrix_state_flush ();
#ifdef HAVE_COGL_GL
GE( glDrawArrays (GL_QUADS, 0, batch_len * 4) );
#else /* HAVE_COGL_GL */
/* GLES doesn't support GL_QUADS so we will use GL_TRIANGLES and
indices */
{
int needed_indices = batch_len * 6;
CoglHandle indices_handle
= cogl_vertex_buffer_indices_get_for_quads (needed_indices);
CoglVertexBufferIndices *indices
= _cogl_vertex_buffer_indices_pointer_from_handle (indices_handle);
GE (glBindBuffer (GL_ELEMENT_ARRAY_BUFFER,
GPOINTER_TO_UINT (indices->vbo_name)));
GE (glDrawElements (GL_TRIANGLES,
6 * batch_len,
indices->type,
NULL));
GE (glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, 0));
}
#endif /* HAVE_COGL_GL */
/* DEBUGGING CODE XXX:
* This path will cause all rectangles to be drawn with a red, green
* or blue outline with no blending. This may e.g. help with debugging
* texture slicing issues or blending issues, plus it looks quite cool.
*/
if (cogl_debug_flags & COGL_DEBUG_RECTANGLES)
{
static CoglHandle outline = COGL_INVALID_HANDLE;
static int color = 0;
if (outline == COGL_INVALID_HANDLE)
outline = cogl_material_new ();
cogl_enable (COGL_ENABLE_VERTEX_ARRAY);
for (i = 0; i < batch_len; i++, color = (color + 1) % 3)
{
cogl_material_set_color4ub (outline,
color == 0 ? 0xff : 0x00,
color == 1 ? 0xff : 0x00,
color == 2 ? 0xff : 0x00,
0xff);
_cogl_material_flush_gl_state (outline, NULL);
_cogl_current_matrix_state_flush ();
GE( glDrawArrays (GL_LINE_LOOP, 4 * i, 4) );
}
}
}
void
_cogl_journal_flush (void)
{
GLfloat *current_vertex_pointer;
GLfloat *batch_vertex_pointer;
CoglJournalEntry *batch_start;
guint batch_len;
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (ctx->journal->len == 0)
return;
/* Current non-variables / constraints:
*
* - We don't have to worry about much GL state changing between journal
* entries since currently the journal never out lasts a single call to
* _cogl_multitexture_multiple_rectangles. So the user doesn't get the
* chance to fiddle with anything. (XXX: later this will be extended at
* which point we can start logging certain state changes)
*
* - Implied from above: all entries will refer to the same material.
*
* - Although _cogl_multitexture_multiple_rectangles can cause the wrap mode
* of textures to be modified, the journal is flushed if a wrap mode is
* changed so we don't currently have to log wrap mode changes.
*
* - XXX - others?
*/
/* TODO: "compile" the journal to find ways of batching draw calls and vertex
* data.
*
* Simple E.g. given current constraints...
* pass 0 - load all data into a single CoglVertexBuffer
* pass 1 - batch gl draw calls according to entries that use the same
* textures.
*
* We will be able to do cooler stuff here when we extend the life of
* journals beyond _cogl_multitexture_multiple_rectangles.
*/
batch_vertex_pointer = (GLfloat *)ctx->logged_vertices->data;
batch_start = (CoglJournalEntry *)ctx->journal->data;
batch_len = 1;
current_vertex_pointer = batch_vertex_pointer;
for (i = 1; i < ctx->journal->len; i++)
{
CoglJournalEntry *prev_entry =
&g_array_index (ctx->journal, CoglJournalEntry, i - 1);
CoglJournalEntry *current_entry = prev_entry + 1;
gsize stride;
/* Progress the vertex pointer to the next quad */
stride = 2 + current_entry->n_layers * 2;
current_vertex_pointer += stride * 4;
/* batch rectangles using the same textures */
if (current_entry->material == prev_entry->material &&
current_entry->n_layers == prev_entry->n_layers &&
current_entry->fallback_mask == prev_entry->fallback_mask &&
current_entry->layer0_override_texture
== prev_entry->layer0_override_texture)
{
batch_len++;
continue;
}
_cogl_journal_flush_quad_batch (batch_start,
batch_len,
batch_vertex_pointer);
batch_start = current_entry;
batch_len = 1;
batch_vertex_pointer = current_vertex_pointer;
}
/* The last batch... */
_cogl_journal_flush_quad_batch (batch_start,
batch_len,
batch_vertex_pointer);
g_array_set_size (ctx->journal, 0);
g_array_set_size (ctx->logged_vertices, 0);
}
static void
_cogl_journal_log_quad (float x_1,
float y_1,
float x_2,
float y_2,
CoglHandle material,
gint n_layers,
guint32 fallback_mask,
GLuint layer0_override_texture,
float *tex_coords,
guint tex_coords_len)
{
int stride;
int next_vert;
GLfloat *v;
int i;
int next_entry;
CoglJournalEntry *entry;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* The vertex data is logged into a seperate array in a layout that can be
* directly passed to OpenGL
*/
/* We pack the vertex data as 2 (x,y) GLfloats folowed by 2 (tx,ty) GLfloats
* for each texture being used, E.g.:
* [X, Y, TX0, TY0, TX1, TY1, X, Y, TX0, TY0, X, Y, ...]
*/
stride = 2 + n_layers * 2;
next_vert = ctx->logged_vertices->len;
g_array_set_size (ctx->logged_vertices, next_vert + 4 * stride);
v = &g_array_index (ctx->logged_vertices, GLfloat, next_vert);
/* XXX: All the jumping around to fill in this strided buffer doesn't
* seem ideal. */
/* XXX: we could defer expanding the vertex data for GL until we come
* to flushing the journal. */
v[0] = x_1; v[1] = y_1;
v += stride;
v[0] = x_1; v[1] = y_2;
v += stride;
v[0] = x_2; v[1] = y_2;
v += stride;
v[0] = x_2; v[1] = y_1;
for (i = 0; i < n_layers; i++)
{
GLfloat *t =
&g_array_index (ctx->logged_vertices, GLfloat, next_vert + 2 + 2 * i);
t[0] = tex_coords[0]; t[1] = tex_coords[1];
t += stride;
t[0] = tex_coords[0]; t[1] = tex_coords[3];
t += stride;
t[0] = tex_coords[2]; t[1] = tex_coords[3];
t += stride;
t[0] = tex_coords[2]; t[1] = tex_coords[1];
}
next_entry = ctx->journal->len;
g_array_set_size (ctx->journal, next_entry + 1);
entry = &g_array_index (ctx->journal, CoglJournalEntry, next_entry);
entry->material = material;
entry->n_layers = n_layers;
entry->fallback_mask = fallback_mask;
entry->layer0_override_texture = layer0_override_texture;
}
static void
_cogl_texture_sliced_quad (CoglTexture *tex,
CoglHandle material,
float x_1,
float y_1,
float x_2,
float y_2,
float tx_1,
float ty_1,
float tx_2,
float ty_2)
{
CoglSpanIter iter_x , iter_y;
float tw , th;
float tqx , tqy;
float first_tx , first_ty;
float first_qx , first_qy;
float slice_tx1 , slice_ty1;
float slice_tx2 , slice_ty2;
float slice_qx1 , slice_qy1;
float slice_qx2 , slice_qy2;
GLuint gl_handle;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
COGL_NOTE (DRAW, "Drawing Tex Quad (Sliced Mode)");
/* We can't use hardware repeat so we need to set clamp to edge
otherwise it might pull in edge pixels from the other side */
_cogl_texture_set_wrap_mode_parameter (tex, GL_CLAMP_TO_EDGE);
/* If the texture coordinates are backwards then swap both the
geometry and texture coordinates so that the texture will be
flipped but we can still use the same algorithm to iterate the
slices */
if (tx_2 < tx_1)
{
float temp = x_1;
x_1 = x_2;
x_2 = temp;
temp = tx_1;
tx_1 = tx_2;
tx_2 = temp;
}
if (ty_2 < ty_1)
{
float temp = y_1;
y_1 = y_2;
y_2 = temp;
temp = ty_1;
ty_1 = ty_2;
ty_2 = temp;
}
/* Scale ratio from texture to quad widths */
tw = (float)(tex->bitmap.width);
th = (float)(tex->bitmap.height);
tqx = (x_2 - x_1) / (tw * (tx_2 - tx_1));
tqy = (y_2 - y_1) / (th * (ty_2 - ty_1));
/* Integral texture coordinate for first tile */
first_tx = (float)(floorf (tx_1));
first_ty = (float)(floorf (ty_1));
/* Denormalize texture coordinates */
first_tx = (first_tx * tw);
first_ty = (first_ty * th);
tx_1 = (tx_1 * tw);
ty_1 = (ty_1 * th);
tx_2 = (tx_2 * tw);
ty_2 = (ty_2 * th);
/* Quad coordinate of the first tile */
first_qx = x_1 - (tx_1 - first_tx) * tqx;
first_qy = y_1 - (ty_1 - first_ty) * tqy;
/* Iterate until whole quad height covered */
for (_cogl_span_iter_begin (&iter_y, tex->slice_y_spans,
first_ty, ty_1, ty_2) ;
!_cogl_span_iter_end (&iter_y) ;
_cogl_span_iter_next (&iter_y) )
{
float tex_coords[4];
/* Discard slices out of quad early */
if (!iter_y.intersects) continue;
/* Span-quad intersection in quad coordinates */
slice_qy1 = first_qy + (iter_y.intersect_start - first_ty) * tqy;
slice_qy2 = first_qy + (iter_y.intersect_end - first_ty) * tqy;
/* Localize slice texture coordinates */
slice_ty1 = iter_y.intersect_start - iter_y.pos;
slice_ty2 = iter_y.intersect_end - iter_y.pos;
/* Normalize texture coordinates to current slice
(rectangle texture targets take denormalized) */
#if HAVE_COGL_GL
if (tex->gl_target != CGL_TEXTURE_RECTANGLE_ARB)
#endif
{
slice_ty1 /= iter_y.span->size;
slice_ty2 /= iter_y.span->size;
}
/* Iterate until whole quad width covered */
for (_cogl_span_iter_begin (&iter_x, tex->slice_x_spans,
first_tx, tx_1, tx_2) ;
!_cogl_span_iter_end (&iter_x) ;
_cogl_span_iter_next (&iter_x) )
{
/* Discard slices out of quad early */
if (!iter_x.intersects) continue;
/* Span-quad intersection in quad coordinates */
slice_qx1 = first_qx + (iter_x.intersect_start - first_tx) * tqx;
slice_qx2 = first_qx + (iter_x.intersect_end - first_tx) * tqx;
/* Localize slice texture coordinates */
slice_tx1 = iter_x.intersect_start - iter_x.pos;
slice_tx2 = iter_x.intersect_end - iter_x.pos;
/* Normalize texture coordinates to current slice
(rectangle texture targets take denormalized) */
#if HAVE_COGL_GL
if (tex->gl_target != CGL_TEXTURE_RECTANGLE_ARB)
#endif
{
slice_tx1 /= iter_x.span->size;
slice_tx2 /= iter_x.span->size;
}
COGL_NOTE (DRAW,
"~~~~~ slice (%d, %d)\n"
"qx1: %f\t"
"qy1: %f\n"
"qx2: %f\t"
"qy2: %f\n"
"tx1: %f\t"
"ty1: %f\n"
"tx2: %f\t"
"ty2: %f\n",
iter_x.index, iter_y.index,
slice_qx1, slice_qy1,
slice_qx2, slice_qy2,
slice_tx1, slice_ty1,
slice_tx2, slice_ty2);
/* Pick and bind opengl texture object */
gl_handle = g_array_index (tex->slice_gl_handles, GLuint,
iter_y.index * iter_x.array->len +
iter_x.index);
tex_coords[0] = slice_tx1;
tex_coords[1] = slice_ty1;
tex_coords[2] = slice_tx2;
tex_coords[3] = slice_ty2;
_cogl_journal_log_quad (slice_qx1,
slice_qy1,
slice_qx2,
slice_qy2,
material,
1, /* one layer */
0, /* don't need to use fallbacks */
gl_handle, /* replace the layer0 texture */
tex_coords,
4);
}
}
}
static gboolean
_cogl_multitexture_unsliced_quad (float x_1,
float y_1,
float x_2,
float y_2,
CoglHandle material,
gint n_layers,
guint32 fallback_mask,
const float *user_tex_coords,
gint user_tex_coords_len)
{
float *final_tex_coords = alloca (sizeof (float) * 4 * n_layers);
const GList *layers;
GList *tmp;
int i;
_COGL_GET_CONTEXT (ctx, FALSE);
/*
* Validate the texture coordinates for this rectangle.
*/
layers = cogl_material_get_layers (material);
for (tmp = (GList *)layers, i = 0; tmp != NULL; tmp = tmp->next, i++)
{
CoglHandle layer = (CoglHandle)tmp->data;
/* CoglLayerInfo *layer_info; */
CoglHandle tex_handle;
CoglTexture *tex;
const float *in_tex_coords;
float *out_tex_coords;
CoglTexSliceSpan *x_span;
CoglTexSliceSpan *y_span;
/* layer_info = &layers[i]; */
/* FIXME - we shouldn't be checking this stuff if layer_info->gl_texture
* already == 0 */
tex_handle = cogl_material_layer_get_texture (layer);
tex = _cogl_texture_pointer_from_handle (tex_handle);
in_tex_coords = &user_tex_coords[i * 4];
out_tex_coords = &final_tex_coords[i * 4];
/* If the texture has waste or we are using GL_TEXTURE_RECT we
* can't handle texture repeating so we check that the texture
* coords lie in the range [0,1].
*
* NB: We already know that no texture matrix is being used
* if the texture has waste since we validated that early on.
* TODO: check for a texture matrix in the GL_TEXTURE_RECT
* case.
*/
if ((
#if HAVE_COGL_GL
tex->gl_target == GL_TEXTURE_RECTANGLE_ARB ||
#endif
_cogl_texture_span_has_waste (tex, 0, 0))
&& i < user_tex_coords_len / 4
&& (in_tex_coords[0] < 0 || in_tex_coords[0] > 1.0
|| in_tex_coords[1] < 0 || in_tex_coords[1] > 1.0
|| in_tex_coords[2] < 0 || in_tex_coords[2] > 1.0
|| in_tex_coords[3] < 0 || in_tex_coords[3] > 1.0))
{
if (i == 0)
{
if (n_layers > 1)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layers 1..n of your material since "
"the first layer has waste and you supplied "
"texture coordinates outside the range [0,1]. "
"We don't currently support any "
"multi-texturing using textures with waste "
"when repeating is necissary so we are "
"falling back to sliced textures assuming "
"layer 0 is the most important one keep");
warning_seen = TRUE;
}
return FALSE;
}
else
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layer %d of your material "
"consisting of a texture with waste since "
"you have supplied texture coords outside "
"the range [0,1] (unsupported when "
"multi-texturing)", i);
warning_seen = TRUE;
/* NB: marking for fallback will replace the layer with
* a default transparent texture */
fallback_mask |= (1 << i);
}
}
/*
* Setup the texture unit...
*/
/* NB: The user might not have supplied texture coordinates for all
* layers... */
if (i < (user_tex_coords_len / 4))
{
GLenum wrap_mode;
/* If the texture coords are all in the range [0,1] then we want to
clamp the coords to the edge otherwise it can pull in edge pixels
from the wrong side when scaled */
if (in_tex_coords[0] >= 0 && in_tex_coords[0] <= 1.0
&& in_tex_coords[1] >= 0 && in_tex_coords[1] <= 1.0
&& in_tex_coords[2] >= 0 && in_tex_coords[2] <= 1.0
&& in_tex_coords[3] >= 0 && in_tex_coords[3] <= 1.0)
wrap_mode = GL_CLAMP_TO_EDGE;
else
wrap_mode = GL_REPEAT;
memcpy (out_tex_coords, in_tex_coords, sizeof (GLfloat) * 4);
_cogl_texture_set_wrap_mode_parameter (tex, wrap_mode);
}
else
{
out_tex_coords[0] = 0; /* tx_1 */
out_tex_coords[1] = 0; /* ty_1 */
out_tex_coords[2] = 1.0; /* tx_2 */
out_tex_coords[3] = 1.0; /* ty_2 */
_cogl_texture_set_wrap_mode_parameter (tex, GL_CLAMP_TO_EDGE);
}
/* Don't include the waste in the texture coordinates */
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, 0);
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, 0);
out_tex_coords[0] =
out_tex_coords[0] * (x_span->size - x_span->waste) / x_span->size;
out_tex_coords[1] =
out_tex_coords[1] * (y_span->size - y_span->waste) / y_span->size;
out_tex_coords[2] =
out_tex_coords[2] * (x_span->size - x_span->waste) / x_span->size;
out_tex_coords[3] =
out_tex_coords[3] * (y_span->size - y_span->waste) / y_span->size;
#if HAVE_COGL_GL
/* Denormalize texture coordinates for rectangle textures */
if (tex->gl_target == GL_TEXTURE_RECTANGLE_ARB)
{
out_tex_coords[0] *= x_span->size;
out_tex_coords[1] *= y_span->size;
out_tex_coords[2] *= x_span->size;
out_tex_coords[3] *= y_span->size;
}
#endif
}
_cogl_journal_log_quad (x_1,
y_1,
x_2,
y_2,
material,
n_layers,
fallback_mask,
0, /* don't replace the layer0 texture */
final_tex_coords,
n_layers * 4);
return TRUE;
}
struct _CoglMutiTexturedRect
{
float x_1;
float y_1;
float x_2;
float y_2;
const float *tex_coords;
gint tex_coords_len;
};
static void
_cogl_rectangles_with_multitexture_coords (
struct _CoglMutiTexturedRect *rects,
gint n_rects)
{
CoglHandle material;
const GList *layers;
int n_layers;
const GList *tmp;
guint32 fallback_mask = 0;
gboolean all_use_sliced_quad_fallback = FALSE;
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_clip_ensure ();
material = ctx->source_material;
layers = cogl_material_get_layers (material);
n_layers = g_list_length ((GList *)layers);
/*
* Validate all the layers of the current source material...
*/
for (tmp = layers, i = 0; tmp != NULL; tmp = tmp->next, i++)
{
CoglHandle layer = tmp->data;
CoglHandle tex_handle = cogl_material_layer_get_texture (layer);
CoglTexture *texture = _cogl_texture_pointer_from_handle (tex_handle);
gulong flags;
if (cogl_material_layer_get_type (layer)
!= COGL_MATERIAL_LAYER_TYPE_TEXTURE)
continue;
/* XXX:
* For now, if the first layer is sliced then all other layers are
* ignored since we currently don't support multi-texturing with
* sliced textures. If the first layer is not sliced then any other
* layers found to be sliced will be skipped. (with a warning)
*
* TODO: Add support for multi-texturing rectangles with sliced
* textures if no texture matrices are in use.
*/
if (cogl_texture_is_sliced (tex_handle))
{
if (i == 0)
{
fallback_mask = ~1; /* fallback all except the first layer */
all_use_sliced_quad_fallback = TRUE;
if (tmp->next)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layers 1..n of your material since "
"the first layer is sliced. We don't currently "
"support any multi-texturing with sliced "
"textures but assume layer 0 is the most "
"important to keep");
warning_seen = TRUE;
}
break;
}
else
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layer %d of your material consisting of "
"a sliced texture (unsuported for multi texturing)",
i);
warning_seen = TRUE;
/* NB: marking for fallback will replace the layer with
* a default transparent texture */
fallback_mask |= (1 << i);
continue;
}
}
/* We don't support multi texturing using textures with any waste if the
* user has supplied a custom texture matrix, since we don't know if
* the result will end up trying to texture from the waste area. */
flags = _cogl_material_layer_get_flags (layer);
if (flags & COGL_MATERIAL_LAYER_FLAG_HAS_USER_MATRIX
&& _cogl_texture_span_has_waste (texture, 0, 0))
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layer %d of your material consisting of a "
"texture with waste since you have supplied a custom "
"texture matrix and the result may try to sample from "
"the waste area of your texture.", i);
warning_seen = TRUE;
/* NB: marking for fallback will replace the layer with
* a default transparent texture */
fallback_mask |= (1 << i);
continue;
}
}
/*
* Emit geometry for each of the rectangles...
*/
for (i = 0; i < n_rects; i++)
{
if (all_use_sliced_quad_fallback
|| !_cogl_multitexture_unsliced_quad (rects[i].x_1, rects[i].y_1,
rects[i].x_2, rects[i].y_2,
material,
n_layers,
fallback_mask,
rects[i].tex_coords,
rects[i].tex_coords_len))
{
CoglHandle first_layer, tex_handle;
CoglTexture *texture;
first_layer = layers->data;
tex_handle = cogl_material_layer_get_texture (first_layer);
texture = _cogl_texture_pointer_from_handle (tex_handle);
if (rects[i].tex_coords)
_cogl_texture_sliced_quad (texture,
material,
rects[i].x_1, rects[i].y_1,
rects[i].x_2, rects[i].y_2,
rects[i].tex_coords[0],
rects[i].tex_coords[1],
rects[i].tex_coords[2],
rects[i].tex_coords[3]);
else
_cogl_texture_sliced_quad (texture,
material,
rects[i].x_1, rects[i].y_1,
rects[i].x_2, rects[i].y_2,
0.0f, 0.0f, 1.0f, 1.0f);
}
}
_cogl_journal_flush ();
}
void
cogl_rectangles (const float *verts,
guint n_rects)
{
struct _CoglMutiTexturedRect rects[n_rects];
int i;
for (i = 0; i < n_rects; i++)
{
rects[i].x_1 = verts[i * 4];
rects[i].y_1 = verts[i * 4 + 1];
rects[i].x_2 = verts[i * 4 + 2];
rects[i].y_2 = verts[i * 4 + 3];
rects[i].tex_coords = NULL;
rects[i].tex_coords_len = 0;
}
_cogl_rectangles_with_multitexture_coords (rects, n_rects);
}
void
cogl_rectangles_with_texture_coords (const float *verts,
guint n_rects)
{
struct _CoglMutiTexturedRect rects[n_rects];
int i;
for (i = 0; i < n_rects; i++)
{
rects[i].x_1 = verts[i * 8];
rects[i].y_1 = verts[i * 8 + 1];
rects[i].x_2 = verts[i * 8 + 2];
rects[i].y_2 = verts[i * 8 + 3];
/* FIXME: rect should be defined to have a const float *geom;
* instead, to avoid this copy
* rect[i].geom = &verts[n_rects * 8]; */
rects[i].tex_coords = &verts[i * 8 + 4];
rects[i].tex_coords_len = 4;
}
_cogl_rectangles_with_multitexture_coords (rects, n_rects);
}
void
cogl_rectangle_with_texture_coords (float x_1,
float y_1,
float x_2,
float y_2,
float tx_1,
float ty_1,
float tx_2,
float ty_2)
{
float verts[8];
verts[0] = x_1;
verts[1] = y_1;
verts[2] = x_2;
verts[3] = y_2;
verts[4] = tx_1;
verts[5] = ty_1;
verts[6] = tx_2;
verts[7] = ty_2;
cogl_rectangles_with_texture_coords (verts, 1);
}
void
cogl_rectangle_with_multitexture_coords (float x_1,
float y_1,
float x_2,
float y_2,
const float *user_tex_coords,
gint user_tex_coords_len)
{
struct _CoglMutiTexturedRect rect;
rect.x_1 = x_1;
rect.y_1 = y_1;
rect.x_2 = x_2;
rect.y_2 = y_2;
rect.tex_coords = user_tex_coords;
rect.tex_coords_len = user_tex_coords_len;
_cogl_rectangles_with_multitexture_coords (&rect, 1);
}
void
cogl_rectangle (float x_1,
float y_1,
float x_2,
float y_2)
{
cogl_rectangle_with_multitexture_coords (x_1, y_1,
x_2, y_2,
NULL, 0);
}
static void
_cogl_texture_sliced_polygon (CoglTextureVertex *vertices,
guint n_vertices,
guint stride,
gboolean use_color)
{
const GList *layers;
CoglHandle layer0;
CoglHandle tex_handle;
CoglTexture *tex;
CoglTexSliceSpan *y_span, *x_span;
int x, y, tex_num, i;
GLuint gl_handle;
GLfloat *v;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* We can assume in this case that we have at least one layer in the
* material that corresponds to a sliced cogl texture */
layers = cogl_material_get_layers (ctx->source_material);
layer0 = (CoglHandle)layers->data;
tex_handle = cogl_material_layer_get_texture (layer0);
tex = _cogl_texture_pointer_from_handle (tex_handle);
v = (GLfloat *)ctx->logged_vertices->data;
for (i = 0; i < n_vertices; i++)
{
GLfloat *c;
v[0] = vertices[i].x;
v[1] = vertices[i].y;
v[2] = vertices[i].z;
/* NB: [X,Y,Z,TX,TY,R,G,B,A,...] */
c = v + 5;
c[0] = cogl_color_get_red_byte (&vertices[i].color);
c[1] = cogl_color_get_green_byte (&vertices[i].color);
c[2] = cogl_color_get_blue_byte (&vertices[i].color);
c[3] = cogl_color_get_alpha_byte (&vertices[i].color);
v += stride;
}
/* Render all of the slices with the full geometry but use a
transparent border color so that any part of the texture not
covered by the slice will be ignored */
tex_num = 0;
for (y = 0; y < tex->slice_y_spans->len; y++)
{
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, y);
for (x = 0; x < tex->slice_x_spans->len; x++)
{
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, x);
gl_handle = g_array_index (tex->slice_gl_handles, GLuint, tex_num++);
/* Convert the vertices into an array of GLfloats ready to pass to
OpenGL */
v = (GLfloat *)ctx->logged_vertices->data;
for (i = 0; i < n_vertices; i++)
{
GLfloat *t;
float tx, ty;
tx = ((vertices[i].tx
- ((float)(x_span->start)
/ tex->bitmap.width))
* tex->bitmap.width / x_span->size);
ty = ((vertices[i].ty
- ((float)(y_span->start)
/ tex->bitmap.height))
* tex->bitmap.height / y_span->size);
#if HAVE_COGL_GL
/* Scale the coordinates up for rectangle textures */
if (tex->gl_target == CGL_TEXTURE_RECTANGLE_ARB)
{
tx *= x_span->size;
ty *= y_span->size;
}
#endif
/* NB: [X,Y,Z,TX,TY,R,G,B,A,...] */
t = v + 3;
t[0] = tx;
t[1] = ty;
v += stride;
}
_cogl_material_flush_gl_state (ctx->source_material,
COGL_MATERIAL_FLUSH_DISABLE_MASK,
(guint32)~1, /* disable all except the
first layer */
COGL_MATERIAL_FLUSH_LAYER0_OVERRIDE,
gl_handle,
NULL);
_cogl_current_matrix_state_flush ();
GE( glDrawArrays (GL_TRIANGLE_FAN, 0, n_vertices) );
}
}
}
static void
_cogl_multitexture_unsliced_polygon (CoglTextureVertex *vertices,
guint n_vertices,
guint n_layers,
guint stride,
gboolean use_color,
guint32 fallback_mask)
{
CoglHandle material;
const GList *layers;
int i;
GList *tmp;
CoglTexSliceSpan *y_span, *x_span;
GLfloat *v;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
material = ctx->source_material;
layers = cogl_material_get_layers (material);
/* Convert the vertices into an array of GLfloats ready to pass to
OpenGL */
for (v = (GLfloat *)ctx->logged_vertices->data, i = 0;
i < n_vertices;
v += stride, i++)
{
GLfloat *c;
int j;
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
v[0] = vertices[i].x;
v[1] = vertices[i].y;
v[2] = vertices[i].z;
for (tmp = (GList *)layers, j = 0; tmp != NULL; tmp = tmp->next, j++)
{
CoglHandle layer = (CoglHandle)tmp->data;
CoglHandle tex_handle;
CoglTexture *tex;
GLfloat *t;
float tx, ty;
tex_handle = cogl_material_layer_get_texture (layer);
tex = _cogl_texture_pointer_from_handle (tex_handle);
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, 0);
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, 0);
tx = ((vertices[i].tx
- ((float)(x_span->start)
/ tex->bitmap.width))
* tex->bitmap.width / x_span->size);
ty = ((vertices[i].ty
- ((float)(y_span->start)
/ tex->bitmap.height))
* tex->bitmap.height / y_span->size);
#if HAVE_COGL_GL
/* Scale the coordinates up for rectangle textures */
if (tex->gl_target == CGL_TEXTURE_RECTANGLE_ARB)
{
tx *= x_span->size;
ty *= y_span->size;
}
#endif
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
t = v + 3 + 2 * j;
t[0] = tx;
t[1] = ty;
}
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
c = v + 3 + 2 * n_layers;
c[0] = cogl_color_get_red_float (&vertices[i].color);
c[1] = cogl_color_get_green_float (&vertices[i].color);
c[2] = cogl_color_get_blue_float (&vertices[i].color);
c[3] = cogl_color_get_alpha_float (&vertices[i].color);
}
_cogl_material_flush_gl_state (ctx->source_material,
COGL_MATERIAL_FLUSH_FALLBACK_MASK,
fallback_mask,
NULL);
_cogl_current_matrix_state_flush ();
GE (glDrawArrays (GL_TRIANGLE_FAN, 0, n_vertices));
}
void
cogl_polygon (CoglTextureVertex *vertices,
guint n_vertices,
gboolean use_color)
{
CoglHandle material;
const GList *layers;
int n_layers;
GList *tmp;
gboolean use_sliced_polygon_fallback = FALSE;
guint32 fallback_mask = 0;
int i;
gulong enable_flags;
guint stride;
gsize stride_bytes;
GLfloat *v;
int prev_n_texcoord_arrays_enabled;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_clip_ensure ();
material = ctx->source_material;
layers = cogl_material_get_layers (ctx->source_material);
n_layers = g_list_length ((GList *)layers);
for (tmp = (GList *)layers, i = 0; tmp != NULL; tmp = tmp->next, i++)
{
CoglHandle layer = (CoglHandle)tmp->data;
CoglHandle tex_handle = cogl_material_layer_get_texture (layer);
if (i == 0 && cogl_texture_is_sliced (tex_handle))
{
#if defined (HAVE_COGL_GLES) || defined (HAVE_COGL_GLES2)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("cogl_polygon does not work for sliced textures "
"on GL ES");
warning_seen = TRUE;
return;
}
#endif
if (n_layers > 1)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
{
g_warning ("Disabling layers 1..n since multi-texturing with "
"cogl_polygon isn't supported when using sliced "
"textures\n");
warning_seen = TRUE;
}
}
use_sliced_polygon_fallback = TRUE;
n_layers = 1;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
if (cogl_material_layer_get_min_filter (layer) != GL_NEAREST
|| cogl_material_layer_get_mag_filter (layer) != GL_NEAREST)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
{
g_warning ("cogl_texture_polygon does not work for sliced textures "
"when the minification and magnification filters are not "
"CGL_NEAREST");
warning_seen = TRUE;
}
return;
}
#ifdef HAVE_COGL_GL
{
CoglTexture *tex = _cogl_texture_pointer_from_handle (tex_handle);
/* Temporarily change the wrapping mode on all of the slices to use
* a transparent border
* XXX: it's doesn't look like we save/restore this, like
* the comment implies? */
_cogl_texture_set_wrap_mode_parameter (tex, GL_CLAMP_TO_BORDER);
}
#endif
break;
}
if (cogl_texture_is_sliced (tex_handle))
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Disabling layer %d of the current source material, "
"because texturing with the vertex buffer API is not "
"currently supported using sliced textures, or "
"textures with waste\n", i);
warning_seen = TRUE;
fallback_mask |= (1 << i);
continue;
}
}
/* Our data is arranged like:
* [X, Y, Z, TX0, TY0, TX1, TY1..., R, G, B, A,...] */
stride = 3 + (2 * n_layers) + (use_color ? 4 : 0);
stride_bytes = stride * sizeof (GLfloat);
/* Make sure there is enough space in the global vertex
array. This is used so we can render the polygon with a single
call to OpenGL but still support any number of vertices */
g_array_set_size (ctx->logged_vertices, n_vertices * stride);
v = (GLfloat *)ctx->logged_vertices->data;
/* Prepare GL state */
enable_flags = COGL_ENABLE_VERTEX_ARRAY;
enable_flags |= _cogl_material_get_cogl_enable_flags (ctx->source_material);
if (ctx->enable_backface_culling)
enable_flags |= COGL_ENABLE_BACKFACE_CULLING;
if (use_color)
{
enable_flags |= COGL_ENABLE_COLOR_ARRAY;
GE( glColorPointer (4, GL_FLOAT,
stride_bytes,
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
v + 3 + 2 * n_layers) );
}
cogl_enable (enable_flags);
GE (glVertexPointer (3, GL_FLOAT, stride_bytes, v));
for (i = 0; i < n_layers; i++)
{
GE (glClientActiveTexture (GL_TEXTURE0 + i));
GE (glEnableClientState (GL_TEXTURE_COORD_ARRAY));
GE (glTexCoordPointer (2, GL_FLOAT,
stride_bytes,
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
v + 3 + 2 * i));
}
prev_n_texcoord_arrays_enabled =
ctx->n_texcoord_arrays_enabled;
ctx->n_texcoord_arrays_enabled = n_layers;
for (; i < prev_n_texcoord_arrays_enabled; i++)
{
GE (glClientActiveTexture (GL_TEXTURE0 + i));
GE (glDisableClientState (GL_TEXTURE_COORD_ARRAY));
}
if (use_sliced_polygon_fallback)
_cogl_texture_sliced_polygon (vertices,
n_vertices,
stride,
use_color);
else
_cogl_multitexture_unsliced_polygon (vertices,
n_vertices,
n_layers,
stride,
use_color,
fallback_mask);
/* Reset the size of the logged vertex array because rendering
rectangles expects it to start at 0 */
g_array_set_size (ctx->logged_vertices, 0);
}
void
cogl_path_fill (void)
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
{
cogl_path_fill_preserve ();
cogl_path_new ();
}
void
cogl_path_fill_preserve (void)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
cogl_clip_ensure ();
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
if (ctx->path_nodes->len == 0)
return;
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
_cogl_path_fill_nodes ();
}
void
cogl_path_stroke (void)
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
{
cogl_path_stroke_preserve ();
cogl_path_new ();
}
void
cogl_path_stroke_preserve (void)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
cogl_clip_ensure ();
if (ctx->path_nodes->len == 0)
return;
_cogl_path_stroke_nodes();
}
void
cogl_path_move_to (float x,
float y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* FIXME: handle multiple contours maybe? */
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
_cogl_path_add_node (TRUE, x, y);
ctx->path_start.x = x;
ctx->path_start.y = y;
ctx->path_pen = ctx->path_start;
}
void
cogl_path_rel_move_to (float x,
float y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_move_to (ctx->path_pen.x + x,
ctx->path_pen.y + y);
}
void
cogl_path_line_to (float x,
float y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
_cogl_path_add_node (FALSE, x, y);
ctx->path_pen.x = x;
ctx->path_pen.y = y;
}
void
cogl_path_rel_line_to (float x,
float y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_line_to (ctx->path_pen.x + x,
ctx->path_pen.y + y);
}
void
cogl_path_close (void)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
_cogl_path_add_node (FALSE, ctx->path_start.x, ctx->path_start.y);
ctx->path_pen = ctx->path_start;
}
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
void
cogl_path_new (void)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
g_array_set_size (ctx->path_nodes, 0);
}
void
cogl_path_line (float x_1,
float y_1,
float x_2,
float y_2)
{
cogl_path_move_to (x_1, y_1);
cogl_path_line_to (x_2, y_2);
}
void
cogl_path_polyline (float *coords,
gint num_points)
{
gint c = 0;
cogl_path_move_to (coords[0], coords[1]);
for (c = 1; c < num_points; ++c)
cogl_path_line_to (coords[2*c], coords[2*c+1]);
}
void
cogl_path_polygon (float *coords,
gint num_points)
{
cogl_path_polyline (coords, num_points);
cogl_path_close ();
}
void
cogl_path_rectangle (float x_1,
float y_1,
float x_2,
float y_2)
{
cogl_path_move_to (x_1, y_1);
cogl_path_line_to (x_2, y_1);
cogl_path_line_to (x_2, y_2);
cogl_path_line_to (x_1, y_2);
cogl_path_close ();
}
static void
_cogl_path_arc (float center_x,
float center_y,
float radius_x,
float radius_y,
float angle_1,
float angle_2,
float angle_step,
guint move_first)
{
float a = 0x0;
float cosa = 0x0;
float sina = 0x0;
float px = 0x0;
float py = 0x0;
/* Fix invalid angles */
if (angle_1 == angle_2 || angle_step == 0x0)
return;
if (angle_step < 0x0)
angle_step = -angle_step;
/* Walk the arc by given step */
a = angle_1;
while (a != angle_2)
{
cosa = cosf (a * (G_PI/180.0));
sina = sinf (a * (G_PI/180.0));
px = center_x + (cosa * radius_x);
py = center_y + (sina * radius_y);
if (a == angle_1 && move_first)
cogl_path_move_to (px, py);
else
cogl_path_line_to (px, py);
if (G_LIKELY (angle_2 > angle_1))
{
a += angle_step;
if (a > angle_2)
a = angle_2;
}
else
{
a -= angle_step;
if (a < angle_2)
a = angle_2;
}
}
/* Make sure the final point is drawn */
cosa = cosf (angle_2 * (G_PI/180.0));
sina = sinf (angle_2 * (G_PI/180.0));
px = center_x + (cosa * radius_x);
py = center_y + (sina * radius_y);
cogl_path_line_to (px, py);
}
void
cogl_path_arc (float center_x,
float center_y,
float radius_x,
float radius_y,
float angle_1,
float angle_2)
{
float angle_step = 10;
/* it is documented that a move to is needed to create a freestanding
* arc
*/
_cogl_path_arc (center_x, center_y,
radius_x, radius_y,
angle_1, angle_2,
angle_step, 0 /* no move */);
}
void
cogl_path_arc_rel (float center_x,
float center_y,
float radius_x,
float radius_y,
float angle_1,
float angle_2,
float angle_step)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
_cogl_path_arc (ctx->path_pen.x + center_x,
ctx->path_pen.y + center_y,
radius_x, radius_y,
angle_1, angle_2,
angle_step, 0 /* no move */);
}
void
cogl_path_ellipse (float center_x,
float center_y,
float radius_x,
float radius_y)
{
float angle_step = 10;
/* FIXME: if shows to be slow might be optimized
* by mirroring just a quarter of it */
_cogl_path_arc (center_x, center_y,
radius_x, radius_y,
0, 360,
angle_step, 1 /* move first */);
cogl_path_close();
}
void
cogl_path_round_rectangle (float x_1,
float y_1,
float x_2,
float y_2,
float radius,
float arc_step)
{
float inner_width = x_2 - x_1 - radius * 2;
float inner_height = y_2 - y_1 - radius * 2;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_move_to (x_1, y_1 + radius);
cogl_path_arc_rel (radius, 0,
radius, radius,
180,
270,
arc_step);
cogl_path_line_to (ctx->path_pen.x + inner_width,
ctx->path_pen.y);
cogl_path_arc_rel (0, radius,
radius, radius,
-90,
0,
arc_step);
cogl_path_line_to (ctx->path_pen.x,
ctx->path_pen.y + inner_height);
cogl_path_arc_rel (-radius, 0,
radius, radius,
0,
90,
arc_step);
cogl_path_line_to (ctx->path_pen.x - inner_width,
ctx->path_pen.y);
cogl_path_arc_rel (0, -radius,
radius, radius,
90,
180,
arc_step);
cogl_path_close ();
}
static void
_cogl_path_bezier3_sub (CoglBezCubic *cubic)
{
CoglBezCubic cubics[_COGL_MAX_BEZ_RECURSE_DEPTH];
CoglBezCubic *cleft;
CoglBezCubic *cright;
CoglBezCubic *c;
floatVec2 dif1;
floatVec2 dif2;
floatVec2 mm;
floatVec2 c1;
floatVec2 c2;
floatVec2 c3;
floatVec2 c4;
floatVec2 c5;
gint cindex;
/* Put first curve on stack */
cubics[0] = *cubic;
cindex = 0;
while (cindex >= 0)
{
c = &cubics[cindex];
/* Calculate distance of control points from their
* counterparts on the line between end points */
dif1.x = (c->p2.x * 3) - (c->p1.x * 2) - c->p4.x;
dif1.y = (c->p2.y * 3) - (c->p1.y * 2) - c->p4.y;
dif2.x = (c->p3.x * 3) - (c->p4.x * 2) - c->p1.x;
dif2.y = (c->p3.y * 3) - (c->p4.y * 2) - c->p1.y;
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
if (dif1.x < 0)
dif1.x = -dif1.x;
if (dif1.y < 0)
dif1.y = -dif1.y;
if (dif2.x < 0)
dif2.x = -dif2.x;
if (dif2.y < 0)
dif2.y = -dif2.y;
/* Pick the greatest of two distances */
if (dif1.x < dif2.x) dif1.x = dif2.x;
if (dif1.y < dif2.y) dif1.y = dif2.y;
/* Cancel if the curve is flat enough */
if (dif1.x + dif1.y <= 1.0 ||
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
cindex == _COGL_MAX_BEZ_RECURSE_DEPTH-1)
{
/* Add subdivision point (skip last) */
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
if (cindex == 0)
return;
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
_cogl_path_add_node (FALSE, c->p4.x, c->p4.y);
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
--cindex;
continue;
}
/* Left recursion goes on top of stack! */
cright = c; cleft = &cubics[++cindex];
/* Subdivide into 2 sub-curves */
c1.x = ((c->p1.x + c->p2.x) / 2);
c1.y = ((c->p1.y + c->p2.y) / 2);
mm.x = ((c->p2.x + c->p3.x) / 2);
mm.y = ((c->p2.y + c->p3.y) / 2);
c5.x = ((c->p3.x + c->p4.x) / 2);
c5.y = ((c->p3.y + c->p4.y) / 2);
c2.x = ((c1.x + mm.x) / 2);
c2.y = ((c1.y + mm.y) / 2);
c4.x = ((mm.x + c5.x) / 2);
c4.y = ((mm.y + c5.y) / 2);
c3.x = ((c2.x + c4.x) / 2);
c3.y = ((c2.y + c4.y) / 2);
/* Add left recursion to stack */
cleft->p1 = c->p1;
cleft->p2 = c1;
cleft->p3 = c2;
cleft->p4 = c3;
/* Add right recursion to stack */
cright->p1 = c3;
cright->p2 = c4;
cright->p3 = c5;
cright->p4 = c->p4;
}
}
void
cogl_path_curve_to (float x_1,
float y_1,
float x_2,
float y_2,
float x_3,
float y_3)
{
CoglBezCubic cubic;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* Prepare cubic curve */
cubic.p1 = ctx->path_pen;
cubic.p2.x = x_1;
cubic.p2.y = y_1;
cubic.p3.x = x_2;
cubic.p3.y = y_2;
cubic.p4.x = x_3;
cubic.p4.y = y_3;
/* Run subdivision */
_cogl_path_bezier3_sub (&cubic);
/* Add last point */
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
_cogl_path_add_node (FALSE, cubic.p4.x, cubic.p4.y);
ctx->path_pen = cubic.p4;
}
void
cogl_path_rel_curve_to (float x_1,
float y_1,
float x_2,
float y_2,
float x_3,
float y_3)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_curve_to (ctx->path_pen.x + x_1,
ctx->path_pen.y + y_1,
ctx->path_pen.x + x_2,
ctx->path_pen.y + y_2,
ctx->path_pen.x + x_3,
ctx->path_pen.y + y_3);
}
/* If second order beziers were needed the following code could
* be re-enabled:
*/
#if 0
static void
_cogl_path_bezier2_sub (CoglBezQuad *quad)
{
CoglBezQuad quads[_COGL_MAX_BEZ_RECURSE_DEPTH];
CoglBezQuad *qleft;
CoglBezQuad *qright;
CoglBezQuad *q;
floatVec2 mid;
floatVec2 dif;
floatVec2 c1;
floatVec2 c2;
floatVec2 c3;
gint qindex;
/* Put first curve on stack */
quads[0] = *quad;
qindex = 0;
/* While stack is not empty */
while (qindex >= 0)
{
q = &quads[qindex];
/* Calculate distance of control point from its
* counterpart on the line between end points */
mid.x = ((q->p1.x + q->p3.x) / 2);
mid.y = ((q->p1.y + q->p3.y) / 2);
dif.x = (q->p2.x - mid.x);
dif.y = (q->p2.y - mid.y);
if (dif.x < 0) dif.x = -dif.x;
if (dif.y < 0) dif.y = -dif.y;
/* Cancel if the curve is flat enough */
if (dif.x + dif.y <= 1.0 ||
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
qindex == _COGL_MAX_BEZ_RECURSE_DEPTH - 1)
{
/* Add subdivision point (skip last) */
if (qindex == 0) return;
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
_cogl_path_add_node (FALSE, q->p3.x, q->p3.y);
--qindex; continue;
}
/* Left recursion goes on top of stack! */
qright = q; qleft = &quads[++qindex];
/* Subdivide into 2 sub-curves */
c1.x = ((q->p1.x + q->p2.x) / 2);
c1.y = ((q->p1.y + q->p2.y) / 2);
c3.x = ((q->p2.x + q->p3.x) / 2);
c3.y = ((q->p2.y + q->p3.y) / 2);
c2.x = ((c1.x + c3.x) / 2);
c2.y = ((c1.y + c3.y) / 2);
/* Add left recursion onto stack */
qleft->p1 = q->p1;
qleft->p2 = c1;
qleft->p3 = c2;
/* Add right recursion onto stack */
qright->p1 = c2;
qright->p2 = c3;
qright->p3 = q->p3;
}
}
void
cogl_path_curve2_to (float x_1,
float y_1,
float x_2,
float y_2)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
CoglBezQuad quad;
/* Prepare quadratic curve */
quad.p1 = ctx->path_pen;
quad.p2.x = x_1;
quad.p2.y = y_1;
quad.p3.x = x_2;
quad.p3.y = y_2;
/* Run subdivision */
_cogl_path_bezier2_sub (&quad);
/* Add last point */
Bug 1172 - Disjoint paths and clip to path * clutter/cogl/cogl-path.h: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gles/cogl-primitives.c: Changed the semantics of cogl_path_move_to. Previously this always started a new path but now it instead starts a new disjoint sub path. The path isn't cleared until you call either cogl_path_stroke, cogl_path_fill or cogl_path_new. There are also cogl_path_stroke_preserve and cogl_path_fill_preserve functions. * clutter/cogl/gl/cogl-context.c: * clutter/cogl/gl/cogl-context.h: * clutter/cogl/gles/cogl-context.c: * clutter/cogl/gles/cogl-context.h: Convert the path nodes array to a GArray. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-clip-stack.h: Simplified the clip stack code quite a bit to make it more maintainable. Previously whenever you added a new clip it would go through a separate route to immediately intersect with the current clip and when you removed it again it would immediately rebuild the entire clip. Now when you add or remove a clip it doesn't do anything immediately but just sets a dirty flag instead. * clutter/cogl/gl/cogl.c: * clutter/cogl/gles/cogl.c: Taken away the code to intersect stencil clips when there is exactly one stencil bit. It won't work with path clips and I don't know of any platform that doesn't have eight or zero stencil bits. It needs at least three bits to intersect a path with an existing clip. cogl_features_init now just decides you don't have a stencil buffer at all if you have less than three bits. * clutter/cogl/cogl.h.in: New functions and documentation. * tests/interactive/test-clip.c: Replaced with a different test that lets you add and remove clips. The three different mouse buttons add clips in different shapes. This makes it easier to test multiple levels of clipping. * tests/interactive/test-cogl-primitives.c: Use cogl_path_stroke_preserve when using the same path again. * doc/reference/cogl/cogl-sections.txt: Document the new functions.
2008-12-04 13:45:09 +00:00
_cogl_path_add_node (FALSE, quad.p3.x, quad.p3.y);
ctx->path_pen = quad.p3;
}
void
cogl_rel_curve2_to (float x_1,
float y_1,
float x_2,
float y_2)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_curve2_to (ctx->path_pen.x + x_1,
ctx->path_pen.y + y_1,
ctx->path_pen.x + x_2,
ctx->path_pen.y + y_2);
}
#endif