mutter/clutter/cogl/cogl-texture.h

496 lines
18 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#if !defined(__COGL_H_INSIDE__) && !defined(CLUTTER_COMPILATION)
#error "Only <cogl/cogl.h> can be included directly."
#endif
#ifndef __COGL_TEXTURE_H__
#define __COGL_TEXTURE_H__
#include <cogl/cogl-types.h>
G_BEGIN_DECLS
/**
* SECTION:cogl-texture
* @short_description: Fuctions for creating and manipulating textures
*
* COGL allows creating and manipulating GL textures using a uniform
* API that tries to hide all the various complexities of creating,
* loading and manipulating textures.
*/
/**
* cogl_texture_new_with_size:
* @width: width of texture in pixels.
* @height: height of texture in pixels.
* @max_waste: maximum extra horizontal and|or vertical margin pixels
* to make the texture fit GPU limitations
* @flags: Optional flags for the texture, or %COGL_TEXTURE_NONE
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
* texture.
*
* Creates a new COGL texture with the specified dimensions and pixel format.
*
* Return value: a #CoglHandle to the newly created texture or
* %COGL_INVALID_HANDLE on failure
*
* Since: 0.8
*/
CoglHandle cogl_texture_new_with_size (guint width,
guint height,
gint max_waste,
CoglTextureFlags flags,
CoglPixelFormat internal_format);
/**
* cogl_texture_new_from_file:
* @filename: the file to load
* @max_waste: maximum extra horizontal and|or vertical margin pixels
* to make the texture fit GPU limitations
* @flags: Optional flags for the texture, or %COGL_TEXTURE_NONE
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
* texture
* @error: return location for a #GError or %NULL
*
* Creates a COGL texture from an image file.
*
* Return value: a #CoglHandle to the newly created texture or
* %COGL_INVALID_HANDLE on failure
*
* Since: 0.8
*/
CoglHandle cogl_texture_new_from_file (const gchar *filename,
gint max_waste,
CoglTextureFlags flags,
CoglPixelFormat internal_format,
GError **error);
/**
* cogl_texture_new_from_data:
* @width: width of texture in pixels
* @height: height of texture in pixels
* @max_waste: maximum extra horizontal and|or vertical margin pixels
* to make the texture fit GPU limitations
* @flags: Optional flags for the texture, or %COGL_TEXTURE_NONE
* @format: the #CoglPixelFormat the buffer is stored in in RAM
* @internal_format: the #CoglPixelFormat that will be used for storing
* the buffer on the GPU
* @rowstride: the memory offset in bytes between the starts of
* scanlines in @data
* @data: pointer the memory region where the source buffer resides
*
* Creates a new COGL texture based on data residing in memory.
*
* Return value: a #CoglHandle to the newly created texture or
* %COGL_INVALID_HANDLE on failure
*
* Since: 0.8
*/
CoglHandle cogl_texture_new_from_data (guint width,
guint height,
gint max_waste,
CoglTextureFlags flags,
CoglPixelFormat format,
CoglPixelFormat internal_format,
guint rowstride,
const guchar *data);
/**
* cogl_texture_new_from_foreign:
* @gl_handle: opengl target type of foreign texture
* @gl_target: opengl handle of foreign texture.
* @width: width of foreign texture
* @height: height of foreign texture.
* @x_pot_waste: maximum horizontal waste.
* @y_pot_waste: maximum vertical waste.
* @format: format of the foreign texture.
*
* Creates a COGL texture based on an existing OpenGL texture; the
* width, height and format are passed along since it is not possible
* to query this from a handle with GLES 1.0.
*
* Return value: a #CoglHandle to the newly created texture or
* %COGL_INVALID_HANDLE on failure
*
* Since: 0.8
*/
CoglHandle cogl_texture_new_from_foreign (GLuint gl_handle,
GLenum gl_target,
GLuint width,
GLuint height,
GLuint x_pot_waste,
GLuint y_pot_waste,
CoglPixelFormat format);
/**
* cogl_texture_new_from_bitmap:
* @bmp_handle: A CoglBitmap handle
* @max_waste: maximum extra horizontal and|or vertical margin pixels
* to make the texture fit GPU limitations
* @flags: Optional flags for the texture, or %COGL_TEXTURE_NONE
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
* texture
*
* Creates a COGL texture from a CoglBitmap.
*
* Return value: a #CoglHandle to the newly created texture or
* %COGL_INVALID_HANDLE on failure
*
* Since: 1.0
*/
CoglHandle cogl_texture_new_from_bitmap (CoglHandle bmp_handle,
gint max_waste,
CoglTextureFlags flags,
CoglPixelFormat internal_format);
/**
* cogl_is_texture:
* @handle: A CoglHandle
*
* Gets whether the given handle references an existing texture object.
*
* Returns: %TRUE if the handle references a texture,
* %FALSE otherwise
*/
gboolean cogl_is_texture (CoglHandle handle);
/**
* cogl_texture_get_width:
* @handle: a #CoglHandle for a texture.
*
* Query the width of a cogl texture.
*
* Returns: the width of the GPU side texture in pixels:
*/
guint cogl_texture_get_width (CoglHandle handle);
/**
* cogl_texture_get_height:
* @handle: a #CoglHandle for a texture.
*
* Query the height of a cogl texture.
*
* Returns: the height of the GPU side texture in pixels:
*/
guint cogl_texture_get_height (CoglHandle handle);
/**
* cogl_texture_get_format:
* @handle: a #CoglHandle for a texture.
*
* Query the #CoglPixelFormat of a cogl texture.
*
* Returns: the #CoglPixelFormat of the GPU side texture.
*/
CoglPixelFormat cogl_texture_get_format (CoglHandle handle);
/**
* cogl_texture_get_rowstride:
* @handle: a #CoglHandle for a texture.
*
* Query the rowstride of a cogl texture.
*
* Returns: the offset in bytes between each consequetive row of pixels.
*/
guint cogl_texture_get_rowstride (CoglHandle handle);
/**
* cogl_texture_get_max_waste:
* @handle: a #CoglHandle for a texture.
*
* Query the maximum wasted (unused) pixels in one dimension of a GPU side
* texture.
*
* Returns: the maximum waste.
*/
gint cogl_texture_get_max_waste (CoglHandle handle);
/**
* cogl_texture_get_min_filter:
* @handle: a #CoglHandle for a texture.
*
* Query the currently set downscaling filter for a cogl texture.
*
* Returns: the current downscaling filter for a cogl texture.
*/
COGLenum cogl_texture_get_min_filter (CoglHandle handle);
/**
* cogl_texture_get_mag_filter:
* @handle: a #CoglHandle for a texture.
*
* Query the currently set downscaling filter for a cogl texture.
*
* Returns: the current downscaling filter for a cogl texture.
*/
COGLenum cogl_texture_get_mag_filter (CoglHandle handle);
/**
* cogl_texture_is_sliced:
* @handle: a #CoglHandle for a texture.
*
* Query if a texture is sliced (stored as multiple GPU side tecture
* objects).
*
* Returns: %TRUE if the texture is sliced, %FALSE if the texture
* is stored as a single GPU texture.
*/
gboolean cogl_texture_is_sliced (CoglHandle handle);
/**
* cogl_texture_get_gl_texture:
* @handle: a #CoglHandle for a texture.
* @out_gl_handle: pointer to return location for the textures GL handle, or
* NULL.
* @out_gl_target: pointer to return location for the GL target type, or NULL.
*
* Query the GL handles for a GPU side texture through it's #CoglHandle,
* if the texture is spliced the data for the first sub texture will be
* queried.
*
* Returns: %TRUE if the handle was successfully retrieved %FALSE
* if the handle was invalid.
*/
gboolean cogl_texture_get_gl_texture (CoglHandle handle,
GLuint *out_gl_handle,
GLenum *out_gl_target);
/**
* cogl_texture_get_data:
* @handle: a #CoglHandle for a texture.
* @format: the #CoglPixelFormat to store the texture as.
* @rowstride: the rowstride of @data or retrieved from texture if none is
* specified.
* @data: memory location to write contents of buffer, or %NULL if we're
* only querying the data size through the return value.
*
* Copy the pixel data from a cogl texture to system memory.
*
* Returns: the size of the texture data in bytes (or 0 if the texture
* is not valid.)
*/
gint cogl_texture_get_data (CoglHandle handle,
CoglPixelFormat format,
guint rowstride,
guchar *data);
/**
* cogl_texture_set_filters:
* @handle: a #CoglHandle.
* @min_filter: the filter used when scaling the texture down.
* @mag_filter: the filter used when magnifying the texture.
*
* Changes the decimation and interpolation filters used when the texture is
* drawn at other scales than 100%.
*/
void cogl_texture_set_filters (CoglHandle handle,
COGLenum min_filter,
COGLenum mag_filter);
/**
* cogl_texture_set_region:
* @handle: a #CoglHandle.
* @src_x: upper left coordinate to use from source data.
* @src_y: upper left coordinate to use from source data.
* @dst_x: upper left destination horizontal coordinate.
* @dst_y: upper left destination vertical coordinate.
* @dst_width: width of destination region to write.
* @dst_height: height of destination region to write.
* @width: width of source data buffer.
* @height: height of source data buffer.
* @format: the #CoglPixelFormat used in the source buffer.
* @rowstride: rowstride of source buffer (computed from width if none
* specified)
* @data: the actual pixel data.
*
* Sets the pixels in a rectangular subregion of @handle from an in-memory
* buffer containing pixel data.
*
* Returns: %TRUE if the subregion upload was successful, otherwise %FALSE.
*/
gboolean cogl_texture_set_region (CoglHandle handle,
gint src_x,
gint src_y,
gint dst_x,
gint dst_y,
guint dst_width,
guint dst_height,
gint width,
gint height,
CoglPixelFormat format,
guint rowstride,
const guchar *data);
/**
* cogl_texture_ref:
* @handle: a @CoglHandle.
*
* Increment the reference count for a cogl texture.
*
* Returns: the @handle.
*/
CoglHandle cogl_texture_ref (CoglHandle handle);
/**
* cogl_texture_unref:
* @handle: a @CoglHandle.
*
* Deccrement the reference count for a cogl texture.
*/
void cogl_texture_unref (CoglHandle handle);
/**
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
* cogl_rectangle_with_texture_coords:
* @x1: x coordinate upper left on screen.
* @y1: y coordinate upper left on screen.
* @x2: x coordinate lower right on screen.
* @y2: y coordinate lower right on screen.
* @tx1: x part of texture coordinate to use for upper left pixel
* @ty1: y part of texture coordinate to use for upper left pixel
* @tx2: x part of texture coordinate to use for lower right pixel
* @ty2: y part of texture coordinate to use for left pixel
*
* Draw a rectangle using the current material and supply texture coordinates
* to be used for the first texture layer of the material. To draw the entire
* texture pass in @tx1=0.0 @ty1=0.0 @tx2=1.0 @ty2=1.0.
*
* Since 1.0
*/
void cogl_rectangle_with_texture_coords (float x1,
float y1,
float x2,
float y2,
float tx1,
float ty1,
float tx2,
float ty2);
/**
* cogl_rectangle_with_multitexture_coords:
* @x1: x coordinate upper left on screen.
* @y1: y coordinate upper left on screen.
* @x2: x coordinate lower right on screen.
* @y2: y coordinate lower right on screen.
* @tex_coords: An array containing groups of 4 float values:
* [tx1, ty1, tx2, ty2] that are interpreted as two texture coordinates; one
* for the upper left texel, and one for the lower right texel. Each value
* should be between 0.0 and 1.0, where the coordinate (0.0, 0.0) represents
* the top left of the texture, and (1.0, 1.0) the bottom right.
* @tex_coords_len: The length of the tex_coords array. (e.g. for one layer
* and one group of texture coordinates, this would be 4)
*
* This function draws a rectangle using the current source material to
* texture or fill with. As a material may contain multiple texture layers
* this interface lets you supply texture coordinates for each layer of the
* material.
*
* The first pair of coordinates are for the first layer (with the smallest
* layer index) and if you supply less texture coordinates than there are
* layers in the current source material then default texture coordinates
* (0.0, 0.0, 1.0, 1.0) are generated.
*
* Since 1.0
*/
void cogl_rectangle_with_multitexture_coords (float x1,
float y1,
float x2,
float y2,
const float *tex_coords,
gint tex_coords_len);
/**
* cogl_rectangles_with_texture_coords:
* @verts: an array of vertices
* @n_rects: number of rectangles to draw
*
* Draws a series of rectangles in the same way that
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
* cogl_rectangle_with_texture_coords() does. In some situations it can give a
* significant performance boost to use this function rather than
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
* calling cogl_rectangle_with_texture_coords() separately for each rectangle.
*
* @verts should point to an array of #float<!-- -->s with
* @n_rects * 8 elements. Each group of 8 values corresponds to the
* parameters x1, y1, x2, y2, tx1, ty1, tx2 and ty2 and have the same
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
* meaning as in cogl_rectangle_with_texture_coords().
*
* Since: 0.8.6
*/
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
void cogl_rectangles_with_texture_coords (const float *verts,
guint n_rects);
/**
* cogl_rectangles:
* @verts: an array of vertices
* @n_rects: number of rectangles to draw
*
* Draws a series of rectangles in the same way that
* cogl_rectangle() does. In some situations it can give a
* significant performance boost to use this function rather than
* calling cogl_rectangle() separately for each rectangle.
*
* @verts should point to an array of #float<!-- -->s with
* @n_rects * 4 elements. Each group of 4 values corresponds to the
* parameters x1, y1, x2, and y2, and have the same
* meaning as in cogl_rectangle().
*
* Since: 1.0
*/
void cogl_rectangles (const float *verts,
guint n_rects);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
/**
* cogl_polygon:
* @vertices: An array of #CoglTextureVertex structs
* @n_vertices: The length of the vertices array
* @use_color: %TRUE if the color member of #CoglTextureVertex should be used
*
* Draws a convex polygon using the current source material to fill / texture
* with according to the texture coordinates passed.
*
* If @use_color is %TRUE then the color will be changed for each vertex using
* the value specified in the color member of #CoglTextureVertex. This can be
* used for example to make the texture fade out by setting the alpha value of
* the color.
*
* All of the texture coordinates must be in the range [0,1] and repeating the
* texture is not supported.
*
* Because of the way this function is implemented it will currently only work
* if either the texture is not sliced or the backend is not OpenGL ES and the
* minifying and magnifying functions are both set to CGL_NEAREST.
*
* Since 1.0
*/
void cogl_polygon (CoglTextureVertex *vertices,
guint n_vertices,
gboolean use_color);
G_END_DECLS
#endif /* __COGL_TEXTURE_H__ */