mutter/cogl/cogl-texture-2d-sliced.h

293 lines
13 KiB
C
Raw Normal View History

/*
* Cogl
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* A Low Level GPU Graphics and Utilities API
*
* Copyright (C) 2011 Intel Corporation.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
#ifndef __COGL_TEXURE_2D_SLICED_H
#define __COGL_TEXURE_2D_SLICED_H
#include "cogl-context.h"
#include "cogl-types.h"
/**
* SECTION:cogl-texture-2d-sliced
* @short_description: Functions for creating and manipulating 2D meta
* textures that may internally be comprised of
* multiple 2D textures with power-of-two sizes.
*
* These functions allow high-level meta textures (See the
* #CoglMetaTexture interface) to be allocated that may internally be
* comprised of multiple 2D texture "slices" with power-of-two sizes.
*
* This API can be useful when working with GPUs that don't have
* native support for non-power-of-two textures or if you want to load
* a texture that is larger than the GPUs maximum texture size limits.
*
* The algorithm for slicing works by first trying to map a virtual
* size to the next larger power-of-two size and then seeing how many
* wasted pixels that would result in. For example if you have a
* virtual texture that's 259 texels wide, the next pot size = 512 and
* the amount of waste would be 253 texels. If the amount of waste is
* above a max-waste threshold then we would next slice that texture
* into one that's 256 texels and then looking at how many more texels
* remain unallocated after that we choose the next power-of-two size.
* For the example of a 259 texel image that would mean having a 256
* texel wide texture, leaving 3 texels unallocated so we'd then
* create a 4 texel wide texture - now there is only one texel of
* waste. The algorithm continues to slice the right most textures
* until the amount of waste is less than or equal to a specfied
* max-waste threshold. The same logic for slicing from left to right
* is also applied from top to bottom.
*/
typedef struct _CoglTexture2DSliced CoglTexture2DSliced;
#define COGL_TEXTURE_2D_SLICED(X) ((CoglTexture2DSliced *)X)
/**
* cogl_texture_2d_sliced_new_with_size:
* @ctx: A #CoglContext
* @width: The virtual width of your sliced texture.
* @height: The virtual height of your sliced texture.
* @max_waste: The threshold of how wide a strip of wasted texels
* are allowed along the right and bottom textures before
* they must be sliced to reduce the amount of waste. A
* negative can be passed to disable slicing.
*
* Creates a #CoglTexture2DSliced that may internally be comprised of
* 1 or more #CoglTexture2D textures depending on GPU limitations.
* For example if the GPU only supports power-of-two sized textures
* then a sliced texture will turn a non-power-of-two size into a
* combination of smaller power-of-two sized textures. If the
* requested texture size is larger than is supported by the hardware
* then the texture will be sliced into smaller textures that can be
* accessed by the hardware.
*
* @max_waste is used as a threshold for recursively slicing the
* right-most or bottom-most slices into smaller sizes until the
* wasted padding at the bottom and right of the textures is less than
* specified. A negative @max_waste will disable slicing.
*
* The storage for the texture is not allocated before this function
* returns. You can call cogl_texture_allocate() to explicitly
* allocate the underlying storage or let Cogl automatically allocate
* storage lazily.
*
* <note>It's possible for the allocation of a sliced texture to fail
* later due to impossible slicing constraints if a negative
* @max_waste value is given. If the given virtual texture size size
* is larger than is supported by the hardware but slicing is disabled
* the texture size would be too large to handle.</note>
*
* Returns: (transfer full): A new #CoglTexture2DSliced object with no storage
* allocated yet.
*
* Since: 1.10
* Stability: unstable
*/
CoglTexture2DSliced *
cogl_texture_2d_sliced_new_with_size (CoglContext *ctx,
int width,
int height,
int max_waste);
/**
* cogl_texture_2d_sliced_new_from_file:
* @ctx: A #CoglContext
* @filename: the file to load
* @max_waste: The threshold of how wide a strip of wasted texels
* are allowed along the right and bottom textures before
* they must be sliced to reduce the amount of waste. A
* negative can be passed to disable slicing.
* @error: A #CoglError to catch exceptional errors or %NULL
*
* Creates a #CoglTexture2DSliced from an image file.
*
* A #CoglTexture2DSliced may internally be comprised of 1 or more
* #CoglTexture2D textures depending on GPU limitations. For example
* if the GPU only supports power-of-two sized textures then a sliced
* texture will turn a non-power-of-two size into a combination of
* smaller power-of-two sized textures. If the requested texture size
* is larger than is supported by the hardware then the texture will
* be sliced into smaller textures that can be accessed by the
* hardware.
*
* @max_waste is used as a threshold for recursively slicing the
* right-most or bottom-most slices into smaller sizes until the
* wasted padding at the bottom and right of the textures is less than
* specified. A negative @max_waste will disable slicing.
*
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
* The storage for the texture is not allocated before this function
* returns. You can call cogl_texture_allocate() to explicitly
* allocate the underlying storage or let Cogl automatically allocate
* storage lazily.
*
* <note>It's possible for the allocation of a sliced texture to fail
* later due to impossible slicing constraints if a negative
* @max_waste value is given. If the given virtual texture size is
* larger than is supported by the hardware but slicing is disabled
* the texture size would be too large to handle.</note>
*
* Return value: (transfer full): A newly created #CoglTexture2DSliced
* or %NULL on failure and @error will be updated.
*
* Since: 1.16
*/
CoglTexture2DSliced *
cogl_texture_2d_sliced_new_from_file (CoglContext *ctx,
const char *filename,
int max_waste,
CoglError **error);
/**
* cogl_texture_2d_sliced_new_from_data:
* @ctx: A #CoglContext
* @width: width of texture in pixels
* @height: height of texture in pixels
* @format: the #CoglPixelFormat the buffer is stored in in RAM
* @max_waste: The threshold of how wide a strip of wasted texels
* are allowed along the right and bottom textures before
* they must be sliced to reduce the amount of waste. A
* negative can be passed to disable slicing.
* @rowstride: the memory offset in bytes between the start of each
* row in @data. A value of 0 will make Cogl automatically
* calculate @rowstride from @width and @format.
* @data: pointer the memory region where the source buffer resides
* @error: A #CoglError to catch exceptional errors or %NULL
*
* Creates a new #CoglTexture2DSliced texture based on data residing
* in memory.
*
* A #CoglTexture2DSliced may internally be comprised of 1 or more
* #CoglTexture2D textures depending on GPU limitations. For example
* if the GPU only supports power-of-two sized textures then a sliced
* texture will turn a non-power-of-two size into a combination of
* smaller power-of-two sized textures. If the requested texture size
* is larger than is supported by the hardware then the texture will
* be sliced into smaller textures that can be accessed by the
* hardware.
*
* @max_waste is used as a threshold for recursively slicing the
* right-most or bottom-most slices into smaller sizes until the
* wasted padding at the bottom and right of the textures is less than
* specified. A negative @max_waste will disable slicing.
*
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
* <note>This api will always immediately allocate GPU memory for all
* the required texture slices and upload the given data so that the
* @data pointer does not need to remain valid once this function
* returns. This means it is not possible to configure the texture
* before it is allocated. If you do need to configure the texture
* before allocation (to specify constraints on the internal format
* for example) then you can instead create a #CoglBitmap for your
* data and use cogl_texture_2d_sliced_new_from_bitmap() or use
* cogl_texture_2d_sliced_new_with_size() and then upload data using
* cogl_texture_set_data()</note>
*
* <note>It's possible for the allocation of a sliced texture to fail
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
* due to impossible slicing constraints if a negative @max_waste
* value is given. If the given virtual texture size is larger than is
* supported by the hardware but slicing is disabled the texture size
* would be too large to handle.</note>
*
* Return value: (transfer full): A newly created #CoglTexture2DSliced
* or %NULL on failure and @error will be updated.
*
* Since: 1.16
*/
CoglTexture2DSliced *
cogl_texture_2d_sliced_new_from_data (CoglContext *ctx,
int width,
int height,
int max_waste,
CoglPixelFormat format,
int rowstride,
const uint8_t *data,
CoglError **error);
/**
* cogl_texture_2d_sliced_new_from_bitmap:
* @bmp: A #CoglBitmap
* @max_waste: The threshold of how wide a strip of wasted texels
* are allowed along the right and bottom textures before
* they must be sliced to reduce the amount of waste. A
* negative can be passed to disable slicing.
*
* Creates a new #CoglTexture2DSliced texture based on data residing
* in a bitmap.
*
* A #CoglTexture2DSliced may internally be comprised of 1 or more
* #CoglTexture2D textures depending on GPU limitations. For example
* if the GPU only supports power-of-two sized textures then a sliced
* texture will turn a non-power-of-two size into a combination of
* smaller power-of-two sized textures. If the requested texture size
* is larger than is supported by the hardware then the texture will
* be sliced into smaller textures that can be accessed by the
* hardware.
*
* @max_waste is used as a threshold for recursively slicing the
* right-most or bottom-most slices into smaller sizes until the
* wasted padding at the bottom and right of the textures is less than
* specified. A negative @max_waste will disable slicing.
*
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
* The storage for the texture is not allocated before this function
* returns. You can call cogl_texture_allocate() to explicitly
* allocate the underlying storage or let Cogl automatically allocate
* storage lazily.
*
* <note>It's possible for the allocation of a sliced texture to fail
* later due to impossible slicing constraints if a negative
* @max_waste value is given. If the given virtual texture size is
* larger than is supported by the hardware but slicing is disabled
* the texture size would be too large to handle.</note>
*
* Return value: (transfer full): A newly created #CoglTexture2DSliced
* or %NULL on failure and @error will be updated.
*
* Since: 1.16
*/
CoglTexture2DSliced *
cogl_texture_2d_sliced_new_from_bitmap (CoglBitmap *bmp,
int max_waste);
Add -Wmissing-declarations to maintainer flags and fix problems This option to GCC makes it give a warning whenever a global function is defined without a declaration. This should catch cases were we've defined a function but forgot to put it in a header. In that case it is either only used within one file so we should make it static or we should declare it in a header. The following changes where made to fix problems: • Some functions were made static • cogl-path.h (the one containing the 1.0 API) was split into two files, one defining the functions and one defining the enums so that cogl-path.c can include the enum and function declarations from the 2.0 API as well as the function declarations from the 1.0 API. • cogl2-clip-state has been removed. This only had one experimental function called cogl_clip_push_from_path but as this is unstable we might as well remove it favour of the equivalent cogl_framebuffer_* API. • The GLX, SDL and WGL winsys's now have a private header to define their get_vtable function instead of directly declaring in the C file where it is called. • All places that were calling COGL_OBJECT_DEFINE need to have the cogl_is_whatever function declared so these have been added either as a public function or in a private header. • Some files that were not including the header containing their function declarations have been fixed to do so. • Any unused error quark functions have been removed. If we later want them we should add them back one by one and add a declaration for them in a header. • _cogl_is_framebuffer has been renamed to cogl_is_framebuffer and made a public function with a declaration in cogl-framebuffer.h • Similarly for CoglOnscreen. • cogl_vdraw_indexed_attributes is called cogl_framebuffer_vdraw_indexed_attributes in the header. The definition has been changed to match the header. • cogl_index_buffer_allocate has been removed. This had no declaration and I'm not sure what it's supposed to do. • CoglJournal has been changed to use the internal CoglObject macro so that it won't define an exported cogl_is_journal symbol. • The _cogl_blah_pointer_from_handle functions have been removed. CoglHandle isn't used much anymore anyway and in the few places where it is used I think it's safe to just use the implicit cast from void* to the right type. • The test-utils.h header for the conformance tests explicitly disables the -Wmissing-declaration option using a pragma because all of the tests declare their main function without a header. Any mistakes relating to missing declarations aren't really important for the tests. • cogl_quaternion_init_from_quaternion and init_from_matrix have been given declarations in cogl-quaternion.h Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-06 13:21:28 -05:00
/**
* cogl_is_texture_2d_sliced:
* @object: A #CoglObject pointer
*
* Gets whether the given object references a #CoglTexture2DSliced.
Add -Wmissing-declarations to maintainer flags and fix problems This option to GCC makes it give a warning whenever a global function is defined without a declaration. This should catch cases were we've defined a function but forgot to put it in a header. In that case it is either only used within one file so we should make it static or we should declare it in a header. The following changes where made to fix problems: • Some functions were made static • cogl-path.h (the one containing the 1.0 API) was split into two files, one defining the functions and one defining the enums so that cogl-path.c can include the enum and function declarations from the 2.0 API as well as the function declarations from the 1.0 API. • cogl2-clip-state has been removed. This only had one experimental function called cogl_clip_push_from_path but as this is unstable we might as well remove it favour of the equivalent cogl_framebuffer_* API. • The GLX, SDL and WGL winsys's now have a private header to define their get_vtable function instead of directly declaring in the C file where it is called. • All places that were calling COGL_OBJECT_DEFINE need to have the cogl_is_whatever function declared so these have been added either as a public function or in a private header. • Some files that were not including the header containing their function declarations have been fixed to do so. • Any unused error quark functions have been removed. If we later want them we should add them back one by one and add a declaration for them in a header. • _cogl_is_framebuffer has been renamed to cogl_is_framebuffer and made a public function with a declaration in cogl-framebuffer.h • Similarly for CoglOnscreen. • cogl_vdraw_indexed_attributes is called cogl_framebuffer_vdraw_indexed_attributes in the header. The definition has been changed to match the header. • cogl_index_buffer_allocate has been removed. This had no declaration and I'm not sure what it's supposed to do. • CoglJournal has been changed to use the internal CoglObject macro so that it won't define an exported cogl_is_journal symbol. • The _cogl_blah_pointer_from_handle functions have been removed. CoglHandle isn't used much anymore anyway and in the few places where it is used I think it's safe to just use the implicit cast from void* to the right type. • The test-utils.h header for the conformance tests explicitly disables the -Wmissing-declaration option using a pragma because all of the tests declare their main function without a header. Any mistakes relating to missing declarations aren't really important for the tests. • cogl_quaternion_init_from_quaternion and init_from_matrix have been given declarations in cogl-quaternion.h Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-06 13:21:28 -05:00
*
* Return value: %TRUE if the object references a #CoglTexture2DSliced
Add -Wmissing-declarations to maintainer flags and fix problems This option to GCC makes it give a warning whenever a global function is defined without a declaration. This should catch cases were we've defined a function but forgot to put it in a header. In that case it is either only used within one file so we should make it static or we should declare it in a header. The following changes where made to fix problems: • Some functions were made static • cogl-path.h (the one containing the 1.0 API) was split into two files, one defining the functions and one defining the enums so that cogl-path.c can include the enum and function declarations from the 2.0 API as well as the function declarations from the 1.0 API. • cogl2-clip-state has been removed. This only had one experimental function called cogl_clip_push_from_path but as this is unstable we might as well remove it favour of the equivalent cogl_framebuffer_* API. • The GLX, SDL and WGL winsys's now have a private header to define their get_vtable function instead of directly declaring in the C file where it is called. • All places that were calling COGL_OBJECT_DEFINE need to have the cogl_is_whatever function declared so these have been added either as a public function or in a private header. • Some files that were not including the header containing their function declarations have been fixed to do so. • Any unused error quark functions have been removed. If we later want them we should add them back one by one and add a declaration for them in a header. • _cogl_is_framebuffer has been renamed to cogl_is_framebuffer and made a public function with a declaration in cogl-framebuffer.h • Similarly for CoglOnscreen. • cogl_vdraw_indexed_attributes is called cogl_framebuffer_vdraw_indexed_attributes in the header. The definition has been changed to match the header. • cogl_index_buffer_allocate has been removed. This had no declaration and I'm not sure what it's supposed to do. • CoglJournal has been changed to use the internal CoglObject macro so that it won't define an exported cogl_is_journal symbol. • The _cogl_blah_pointer_from_handle functions have been removed. CoglHandle isn't used much anymore anyway and in the few places where it is used I think it's safe to just use the implicit cast from void* to the right type. • The test-utils.h header for the conformance tests explicitly disables the -Wmissing-declaration option using a pragma because all of the tests declare their main function without a header. Any mistakes relating to missing declarations aren't really important for the tests. • cogl_quaternion_init_from_quaternion and init_from_matrix have been given declarations in cogl-quaternion.h Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-06 13:21:28 -05:00
* and %FALSE otherwise.
* Since: 1.10
* Stability: unstable
*/
CoglBool
Add -Wmissing-declarations to maintainer flags and fix problems This option to GCC makes it give a warning whenever a global function is defined without a declaration. This should catch cases were we've defined a function but forgot to put it in a header. In that case it is either only used within one file so we should make it static or we should declare it in a header. The following changes where made to fix problems: • Some functions were made static • cogl-path.h (the one containing the 1.0 API) was split into two files, one defining the functions and one defining the enums so that cogl-path.c can include the enum and function declarations from the 2.0 API as well as the function declarations from the 1.0 API. • cogl2-clip-state has been removed. This only had one experimental function called cogl_clip_push_from_path but as this is unstable we might as well remove it favour of the equivalent cogl_framebuffer_* API. • The GLX, SDL and WGL winsys's now have a private header to define their get_vtable function instead of directly declaring in the C file where it is called. • All places that were calling COGL_OBJECT_DEFINE need to have the cogl_is_whatever function declared so these have been added either as a public function or in a private header. • Some files that were not including the header containing their function declarations have been fixed to do so. • Any unused error quark functions have been removed. If we later want them we should add them back one by one and add a declaration for them in a header. • _cogl_is_framebuffer has been renamed to cogl_is_framebuffer and made a public function with a declaration in cogl-framebuffer.h • Similarly for CoglOnscreen. • cogl_vdraw_indexed_attributes is called cogl_framebuffer_vdraw_indexed_attributes in the header. The definition has been changed to match the header. • cogl_index_buffer_allocate has been removed. This had no declaration and I'm not sure what it's supposed to do. • CoglJournal has been changed to use the internal CoglObject macro so that it won't define an exported cogl_is_journal symbol. • The _cogl_blah_pointer_from_handle functions have been removed. CoglHandle isn't used much anymore anyway and in the few places where it is used I think it's safe to just use the implicit cast from void* to the right type. • The test-utils.h header for the conformance tests explicitly disables the -Wmissing-declaration option using a pragma because all of the tests declare their main function without a header. Any mistakes relating to missing declarations aren't really important for the tests. • cogl_quaternion_init_from_quaternion and init_from_matrix have been given declarations in cogl-quaternion.h Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-06 13:21:28 -05:00
cogl_is_texture_2d_sliced (void *object);
#endif /* __COGL_TEXURE_2D_SLICED_H */