mutter/cogl/cogl/cogl-onscreen.h

575 lines
22 KiB
C
Raw Normal View History

/*
* Cogl
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* A Low Level GPU Graphics and Utilities API
*
* Copyright (C) 2011,2012,2013 Intel Corporation.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
#pragma once
#if !defined(__COGL_H_INSIDE__) && !defined(COGL_COMPILATION)
#error "Only <cogl/cogl.h> can be included directly."
#endif
#include "cogl/cogl-context.h"
#include "cogl/cogl-framebuffer.h"
#include "cogl/cogl-frame-info.h"
#include <glib-object.h>
G_BEGIN_DECLS
#define COGL_TYPE_ONSCREEN (cogl_onscreen_get_type ())
COGL_EXPORT
G_DECLARE_DERIVABLE_TYPE (CoglOnscreen, cogl_onscreen,
COGL, ONSCREEN,
CoglFramebuffer)
struct _CoglOnscreenClass
{
/*< private >*/
CoglFramebufferClass parent_class;
void (* bind) (CoglOnscreen *onscreen);
void (* swap_buffers_with_damage) (CoglOnscreen *onscreen,
const int *rectangles,
int n_rectangles,
CoglFrameInfo *info,
gpointer user_data);
void (* swap_region) (CoglOnscreen *onscreen,
const int *rectangles,
int n_rectangles,
CoglFrameInfo *info,
gpointer user_data);
void (* queue_damage_region) (CoglOnscreen *onscreen,
const int *rectangles,
int n_rectangles);
gboolean (* direct_scanout) (CoglOnscreen *onscreen,
CoglScanout *scanout,
CoglFrameInfo *info,
gpointer user_data,
GError **error);
int (* get_buffer_age) (CoglOnscreen *onscreen);
};
/**
* cogl_onscreen_show:
* @onscreen: The onscreen framebuffer to make visible
*
* This requests to make @onscreen visible to the user.
*
* Actually the precise semantics of this function depend on the
* window system currently in use, and if you don't have a
* multi-windowining system this function may in-fact do nothing.
*
* This function will implicitly allocate the given @onscreen
* framebuffer before showing it if it hasn't already been allocated.
*
* When using the Wayland winsys calling this will set the surface to
* a toplevel type which will make it appear. If the application wants
* to set a different type for the surface, it can avoid calling
* cogl_onscreen_show() and set its own type directly with the Wayland
* client API via cogl_wayland_onscreen_get_surface().
*
* Since Cogl doesn't explicitly track the visibility status of
* onscreen framebuffers it won't try to avoid redundant window system
* requests e.g. to show an already visible window. This also means
* that it's acceptable to alternatively use native APIs to show and
* hide windows without confusing Cogl.
*/
COGL_EXPORT void
cogl_onscreen_show (CoglOnscreen *onscreen);
/**
* cogl_onscreen_hide:
* @onscreen: The onscreen framebuffer to make invisible
*
* This requests to make @onscreen invisible to the user.
*
* Actually the precise semantics of this function depend on the
* window system currently in use, and if you don't have a
* multi-windowining system this function may in-fact do nothing.
*
* This function does not implicitly allocate the given @onscreen
* framebuffer before hiding it.
*
* Since Cogl doesn't explicitly track the visibility status of
* onscreen framebuffers it won't try to avoid redundant window system
* requests e.g. to show an already visible window. This also means
* that it's acceptable to alternatively use native APIs to show and
* hide windows without confusing Cogl.
*/
COGL_EXPORT void
cogl_onscreen_hide (CoglOnscreen *onscreen);
/**
* cogl_onscreen_swap_buffers:
* @onscreen: A #CoglOnscreen framebuffer
*
* Swaps the current back buffer being rendered too, to the front for display.
*
* This function also implicitly discards the contents of the color, depth and
* stencil buffers as if cogl_framebuffer_discard_buffers() were used. The
* significance of the discard is that you should not expect to be able to
* start a new frame that incrementally builds on the contents of the previous
* frame.
*
* It is highly recommended that applications use
* cogl_onscreen_swap_buffers_with_damage() instead whenever possible
* and also use the cogl_onscreen_get_buffer_age() api so they can
* perform incremental updates to older buffers instead of having to
* render a full buffer for every frame.
*/
COGL_EXPORT void
cogl_onscreen_swap_buffers (CoglOnscreen *onscreen,
CoglFrameInfo *frame_info,
gpointer user_data);
/**
* cogl_onscreen_get_buffer_age:
* @onscreen: A #CoglOnscreen framebuffer
*
* Gets the current age of the buffer contents.
*
* This function allows applications to query the age of the current
* back buffer contents for a #CoglOnscreen as the number of frames
* elapsed since the contents were most recently defined.
*
* These age values exposes enough information to applications about
* how Cogl internally manages back buffers to allow applications to
* re-use the contents of old frames and minimize how much must be
* redrawn for the next frame.
*
* The back buffer contents can either be reported as invalid (has an
* age of 0) or it may be reported to be the same contents as from n
* frames prior to the current frame.
*
* The queried value remains valid until the next buffer swap.
*
* One caveat is that under X11 the buffer age does not reflect
* changes to buffer contents caused by the window systems. X11
* applications must track Expose events to determine what buffer
* regions need to additionally be repaired each frame.
*
* The recommended way to take advantage of this buffer age api is to
* build up a circular buffer of length 3 for tracking damage regions
* over the last 3 frames and when starting a new frame look at the
* age of the buffer and combine the damage regions for the current
* frame with the damage regions of previous @age frames so you know
* everything that must be redrawn to update the old contents for the
* new frame.
*
* If the system doesn't not support being able to track the age
* of back buffers then this function will always return 0 which
* implies that the contents are undefined.
*
* The %COGL_FEATURE_ID_BUFFER_AGE feature can optionally be
* explicitly checked to determine if Cogl is currently tracking the
* age of #CoglOnscreen back buffer contents. If this feature is
* missing then this function will always return 0.
*
* Return value: The age of the buffer contents or 0 when the buffer
* contents are undefined.
*/
COGL_EXPORT int
cogl_onscreen_get_buffer_age (CoglOnscreen *onscreen);
/**
* cogl_onscreen_queue_damage_region:
* @onscreen: A #CoglOnscreen framebuffer
* @rectangles: (array length=n_rectangles): An array of integer 4-tuples
* representing damaged rectangles as (x, y, width, height) tuples.
* @n_rectangles: The number of 4-tuples to be read from @rectangles
*
* Implementation for https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_partial_update.txt
* This immediately queues state to OpenGL that will be used for the
* next swap.
* This needs to be called every frame.
*
* The expected values are independent of any viewport transforms applied to
* the framebuffer.
*/
COGL_EXPORT void
cogl_onscreen_queue_damage_region (CoglOnscreen *onscreen,
const int *rectangles,
int n_rectangles);
/**
* cogl_onscreen_swap_buffers_with_damage:
* @onscreen: A #CoglOnscreen framebuffer
* @rectangles: (array length=n_rectangles): An array of integer 4-tuples
* representing damaged rectangles as (x, y, width, height) tuples.
* @n_rectangles: The number of 4-tuples to be read from @rectangles
*
* Swaps the current back buffer being rendered too, to the front for
* display and provides information to any system compositor about
* what regions of the buffer have changed (damage) with respect to
* the last swapped buffer.
*
* This function has the same semantics as
* cogl_framebuffer_swap_buffers() except that it additionally allows
* applications to pass a list of damaged rectangles which may be
* passed on to a compositor so that it can minimize how much of the
* screen is redrawn in response to this applications newly swapped
* front buffer.
*
* For example if your application is only animating a small object in
* the corner of the screen and everything else is remaining static
* then it can help the compositor to know that only the bottom right
* corner of your newly swapped buffer has really changed with respect
* to your previously swapped front buffer.
*
* If @n_rectangles is 0 then the whole buffer will implicitly be
* reported as damaged as if cogl_onscreen_swap_buffers() had been
* called.
*
* This function also implicitly discards the contents of the color,
* depth and stencil buffers as if cogl_framebuffer_discard_buffers()
* were used. The significance of the discard is that you should not
* expect to be able to start a new frame that incrementally builds on
* the contents of the previous frame. If you want to perform
* incremental updates to older back buffers then please refer to the
* cogl_onscreen_get_buffer_age() api.
*
* Whenever possible it is recommended that applications use this
* function instead of cogl_onscreen_swap_buffers() to improve
* performance when running under a compositor.
*
* It is highly recommended to use this API in conjunction with
* the cogl_onscreen_get_buffer_age() api so that your application can
* perform incremental rendering based on old back buffers.
*/
COGL_EXPORT void
cogl_onscreen_swap_buffers_with_damage (CoglOnscreen *onscreen,
const int *rectangles,
int n_rectangles,
CoglFrameInfo *info,
gpointer user_data);
/**
* cogl_onscreen_direct_scanout:
*/
COGL_EXPORT gboolean
cogl_onscreen_direct_scanout (CoglOnscreen *onscreen,
CoglScanout *scanout,
CoglFrameInfo *info,
gpointer user_data,
GError **error);
/**
* cogl_onscreen_add_frame_info:
* @onscreen: A #CoglOnscreen framebuffer
* @info: (transfer full): A #CoglFrameInfo
*/
COGL_EXPORT void
cogl_onscreen_add_frame_info (CoglOnscreen *onscreen,
CoglFrameInfo *info);
/**
* cogl_onscreen_swap_region:
* @onscreen: A #CoglOnscreen framebuffer
* @rectangles: (array length=n_rectangles): An array of integer 4-tuples
* representing rectangles as (x, y, width, height) tuples.
* @n_rectangles: The number of 4-tuples to be read from @rectangles
*
* Swaps a region of the back buffer being rendered too, to the front for
* display. @rectangles represents the region as array of @n_rectangles each
* defined by 4 sequential (x, y, width, height) integers.
*
* This function also implicitly discards the contents of the color, depth and
* stencil buffers as if cogl_framebuffer_discard_buffers() were used. The
* significance of the discard is that you should not expect to be able to
* start a new frame that incrementally builds on the contents of the previous
* frame.
*/
COGL_EXPORT void
cogl_onscreen_swap_region (CoglOnscreen *onscreen,
const int *rectangles,
int n_rectangles,
CoglFrameInfo *info,
gpointer user_data);
/**
* CoglFrameEvent:
* @COGL_FRAME_EVENT_SYNC: Notifies that the system compositor has
* acknowledged a frame and is ready for a
* new frame to be created.
* @COGL_FRAME_EVENT_COMPLETE: Notifies that a frame has ended. This
* is a good time for applications to
* collect statistics about the frame
* since the #CoglFrameInfo should hold
* the most data at this point. No other
* events should be expected after a
* @COGL_FRAME_EVENT_COMPLETE event.
*
* Identifiers that are passed to #CoglFrameCallback functions
* (registered using cogl_onscreen_add_frame_callback()) that
* mark the progression of a frame in some way which usually
* means that new information will have been accumulated in the
* frame's corresponding #CoglFrameInfo object.
*
* The last event that will be sent for a frame will be a
* @COGL_FRAME_EVENT_COMPLETE event and so these are a good
* opportunity to collect statistics about a frame since the
* #CoglFrameInfo should hold the most data at this point.
*
* A frame may not be completed before the next frame can start
* so applications should avoid needing to collect all statistics for
* a particular frame before they can start a new frame.
*/
typedef enum _CoglFrameEvent
{
COGL_FRAME_EVENT_SYNC = 1,
COGL_FRAME_EVENT_COMPLETE
} CoglFrameEvent;
/**
* CoglFrameCallback:
* @onscreen: The onscreen that the frame is associated with
* @event: A #CoglFrameEvent notifying how the frame has progressed
* @info: The meta information, such as timing information, about
* the frame that has progressed.
* @user_data: The user pointer passed to
* cogl_onscreen_add_frame_callback()
*
* Is a callback that can be registered via
* cogl_onscreen_add_frame_callback() to be called when a frame
* progresses in some notable way.
*
* Please see the documentation for #CoglFrameEvent and
* cogl_onscreen_add_frame_callback() for more details about what
* events can be notified.
*/
typedef void (*CoglFrameCallback) (CoglOnscreen *onscreen,
CoglFrameEvent event,
CoglFrameInfo *info,
void *user_data);
/**
* CoglFrameClosure:
*
* An opaque type that tracks a #CoglFrameCallback and associated user
* data. A #CoglFrameClosure pointer will be returned from
* cogl_onscreen_add_frame_callback() and it allows you to remove a
* callback later using cogl_onscreen_remove_frame_callback().
*/
typedef struct _CoglClosure CoglFrameClosure;
/**
* cogl_frame_closure_get_type:
*
* Returns: a #GType that can be used with the GLib type system.
*/
COGL_EXPORT
GType cogl_frame_closure_get_type (void);
/**
* cogl_onscreen_add_frame_callback:
* @onscreen: A #CoglOnscreen framebuffer
* @callback: (scope notified): A callback function to call for frame events
* @user_data: (closure): A private pointer to be passed to @callback
* @destroy: (allow-none): An optional callback to destroy @user_data
* when the @callback is removed or @onscreen is freed.
*
* Installs a @callback function that will be called for significant
* events relating to the given @onscreen framebuffer.
*
* The @callback will be used to notify when the system compositor is
* ready for this application to render a new frame. In this case
* %COGL_FRAME_EVENT_SYNC will be passed as the event argument to the
* given @callback in addition to the #CoglFrameInfo corresponding to
* the frame being acknowledged by the compositor.
*
* The @callback will also be called to notify when the frame has
* ended. In this case %COGL_FRAME_EVENT_COMPLETE will be passed as
* the event argument to the given @callback in addition to the
* #CoglFrameInfo corresponding to the newly presented frame. The
* meaning of "ended" here simply means that no more timing
* information will be collected within the corresponding
* #CoglFrameInfo and so this is a good opportunity to analyse the
* given info. It does not necessarily mean that the GPU has finished
* rendering the corresponding frame.
*
* We highly recommend throttling your application according to
* %COGL_FRAME_EVENT_SYNC events so that your application can avoid
* wasting resources, drawing more frames than your system compositor
* can display.
*
* Returns: (transfer none): a #CoglFrameClosure pointer that can be used to
* remove the callback and associated @user_data later.
*/
COGL_EXPORT CoglFrameClosure *
cogl_onscreen_add_frame_callback (CoglOnscreen *onscreen,
CoglFrameCallback callback,
void *user_data,
GDestroyNotify destroy);
/**
* cogl_onscreen_remove_frame_callback:
* @onscreen: A #CoglOnscreen
* @closure: A #CoglFrameClosure returned from
* cogl_onscreen_add_frame_callback()
*
* Removes a callback and associated user data that were previously
* registered using cogl_onscreen_add_frame_callback().
*
* If a destroy callback was passed to
* cogl_onscreen_add_frame_callback() to destroy the user data then
* this will get called.
*/
COGL_EXPORT void
cogl_onscreen_remove_frame_callback (CoglOnscreen *onscreen,
CoglFrameClosure *closure);
/**
* CoglOnscreenDirtyInfo:
* @x: Left edge of the dirty rectangle
* @y: Top edge of the dirty rectangle, measured from the top of the window
* @width: Width of the dirty rectangle
* @height: Height of the dirty rectangle
*
* A structure passed to callbacks registered using
* cogl_onscreen_add_dirty_callback(). The members describe a
* rectangle within the onscreen buffer that should be redrawn.
*/
typedef struct _CoglOnscreenDirtyInfo CoglOnscreenDirtyInfo;
struct _CoglOnscreenDirtyInfo
{
int x, y;
int width, height;
};
/**
* CoglOnscreenDirtyCallback:
* @onscreen: The onscreen that the frame is associated with
* @info: A #CoglOnscreenDirtyInfo struct containing the details of the
* dirty area
* @user_data: The user pointer passed to
* cogl_onscreen_add_frame_callback()
*
* Is a callback that can be registered via
* cogl_onscreen_add_dirty_callback() to be called when the windowing
* system determines that a region of the onscreen window has been
* lost and the application should redraw it.
*/
typedef void (*CoglOnscreenDirtyCallback) (CoglOnscreen *onscreen,
const CoglOnscreenDirtyInfo *info,
void *user_data);
/**
* CoglOnscreenDirtyClosure:
*
* An opaque type that tracks a #CoglOnscreenDirtyCallback and associated
* user data. A #CoglOnscreenDirtyClosure pointer will be returned from
* cogl_onscreen_add_dirty_callback() and it allows you to remove a
* callback later using cogl_onscreen_remove_dirty_callback().
*/
typedef struct _CoglClosure CoglOnscreenDirtyClosure;
/**
* cogl_onscreen_dirty_closure_get_type:
*
* Returns: a #GType that can be used with the GLib type system.
*/
COGL_EXPORT
GType cogl_onscreen_dirty_closure_get_type (void);
/**
* cogl_onscreen_add_dirty_callback:
* @onscreen: A #CoglOnscreen framebuffer
* @callback: (scope notified): A callback function to call for dirty events
* @user_data: (closure): A private pointer to be passed to @callback
* @destroy: (allow-none): An optional callback to destroy @user_data when the
* @callback is removed or @onscreen is freed.
*
* Installs a @callback function that will be called whenever the
* window system has lost the contents of a region of the onscreen
* buffer and the application should redraw it to repair the buffer.
* For example this may happen in a window system without a compositor
* if a window that was previously covering up the onscreen window has
* been moved causing a region of the onscreen to be exposed.
*
* The @callback will be passed a #CoglOnscreenDirtyInfo struct which
* describes a rectangle containing the newly dirtied region. Note that
* this may be called multiple times to describe a non-rectangular
* region composed of multiple smaller rectangles.
*
* The dirty events are separate from %COGL_FRAME_EVENT_SYNC events so
* the application should also listen for this event before rendering
* the dirty region to ensure that the framebuffer is actually ready
* for rendering.
*
* Returns: (transfer none): a #CoglOnscreenDirtyClosure pointer that can be
* used to remove the callback and associated @user_data later.
*/
COGL_EXPORT CoglOnscreenDirtyClosure *
cogl_onscreen_add_dirty_callback (CoglOnscreen *onscreen,
CoglOnscreenDirtyCallback callback,
void *user_data,
GDestroyNotify destroy);
/**
* cogl_onscreen_remove_dirty_callback:
* @onscreen: A #CoglOnscreen
* @closure: A #CoglOnscreenDirtyClosure returned from
* cogl_onscreen_add_dirty_callback()
*
* Removes a callback and associated user data that were previously
* registered using cogl_onscreen_add_dirty_callback().
*
* If a destroy callback was passed to
* cogl_onscreen_add_dirty_callback() to destroy the user data then
* this will also get called.
*/
COGL_EXPORT void
cogl_onscreen_remove_dirty_callback (CoglOnscreen *onscreen,
CoglOnscreenDirtyClosure *closure);
/**
* cogl_onscreen_get_frame_counter:
*
* Gets the value of the framebuffers frame counter. This is
* a counter that increases by one each time
* cogl_onscreen_swap_buffers() or cogl_onscreen_swap_region()
* is called.
*
* Return value: the current frame counter value
*/
COGL_EXPORT int64_t
cogl_onscreen_get_frame_counter (CoglOnscreen *onscreen);
G_END_DECLS