mutter/cogl/cogl-quaternion.c

669 lines
18 KiB
C
Raw Normal View History

/*
* Cogl
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-22 01:28:54 +00:00
* A Low Level GPU Graphics and Utilities API
*
* Copyright (C) 2010 Intel Corporation.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-22 01:28:54 +00:00
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*
* Various references relating to quaternions:
*
* http://www.cs.caltech.edu/courses/cs171/quatut.pdf
* http://mathworld.wolfram.com/Quaternion.html
* http://www.gamedev.net/reference/articles/article1095.asp
* http://www.cprogramming.com/tutorial/3d/quaternions.html
* http://www.isner.com/tutorials/quatSpells/quaternion_spells_12.htm
* http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
* 3D Maths Primer for Graphics and Game Development ISBN-10: 1556229119
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <cogl-util.h>
#include <cogl-quaternion.h>
#include <cogl-quaternion-private.h>
#include <cogl-matrix.h>
#include <cogl-vector.h>
#include <cogl-euler.h>
#include <string.h>
#include <math.h>
#define FLOAT_EPSILON 1e-03
static CoglQuaternion zero_quaternion =
{
0.0, 0.0, 0.0, 0.0,
};
static CoglQuaternion identity_quaternion =
{
1.0, 0.0, 0.0, 0.0,
};
Add -Wmissing-declarations to maintainer flags and fix problems This option to GCC makes it give a warning whenever a global function is defined without a declaration. This should catch cases were we've defined a function but forgot to put it in a header. In that case it is either only used within one file so we should make it static or we should declare it in a header. The following changes where made to fix problems: • Some functions were made static • cogl-path.h (the one containing the 1.0 API) was split into two files, one defining the functions and one defining the enums so that cogl-path.c can include the enum and function declarations from the 2.0 API as well as the function declarations from the 1.0 API. • cogl2-clip-state has been removed. This only had one experimental function called cogl_clip_push_from_path but as this is unstable we might as well remove it favour of the equivalent cogl_framebuffer_* API. • The GLX, SDL and WGL winsys's now have a private header to define their get_vtable function instead of directly declaring in the C file where it is called. • All places that were calling COGL_OBJECT_DEFINE need to have the cogl_is_whatever function declared so these have been added either as a public function or in a private header. • Some files that were not including the header containing their function declarations have been fixed to do so. • Any unused error quark functions have been removed. If we later want them we should add them back one by one and add a declaration for them in a header. • _cogl_is_framebuffer has been renamed to cogl_is_framebuffer and made a public function with a declaration in cogl-framebuffer.h • Similarly for CoglOnscreen. • cogl_vdraw_indexed_attributes is called cogl_framebuffer_vdraw_indexed_attributes in the header. The definition has been changed to match the header. • cogl_index_buffer_allocate has been removed. This had no declaration and I'm not sure what it's supposed to do. • CoglJournal has been changed to use the internal CoglObject macro so that it won't define an exported cogl_is_journal symbol. • The _cogl_blah_pointer_from_handle functions have been removed. CoglHandle isn't used much anymore anyway and in the few places where it is used I think it's safe to just use the implicit cast from void* to the right type. • The test-utils.h header for the conformance tests explicitly disables the -Wmissing-declaration option using a pragma because all of the tests declare their main function without a header. Any mistakes relating to missing declarations aren't really important for the tests. • cogl_quaternion_init_from_quaternion and init_from_matrix have been given declarations in cogl-quaternion.h Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-06 18:21:28 +00:00
/* This function is just here to be called from GDB so we don't really
want to put a declaration in a header and we just add it here to
avoid a warning */
void
_cogl_quaternion_print (CoglQuaternion *quarternion);
void
_cogl_quaternion_print (CoglQuaternion *quaternion)
{
g_print ("[ %6.4f (%6.4f, %6.4f, %6.4f)]\n",
quaternion->w,
quaternion->x,
quaternion->y,
quaternion->z);
}
void
cogl_quaternion_init (CoglQuaternion *quaternion,
float angle,
float x,
float y,
float z)
{
float axis[3] = { x, y, z};
cogl_quaternion_init_from_angle_vector (quaternion, angle, axis);
}
void
cogl_quaternion_init_from_angle_vector (CoglQuaternion *quaternion,
float angle,
const float *axis3f_in)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float axis[3];
float half_angle;
float sin_half_angle;
/* XXX: Should we make cogl_vector3_normalize have separate in and
* out args? */
axis[0] = axis3f_in[0];
axis[1] = axis3f_in[1];
axis[2] = axis3f_in[2];
cogl_vector3_normalize (axis);
half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
sin_half_angle = sinf (half_angle);
quaternion->w = cosf (half_angle);
quaternion->x = axis[0] * sin_half_angle;
quaternion->y = axis[1] * sin_half_angle;
quaternion->z = axis[2] * sin_half_angle;
cogl_quaternion_normalize (quaternion);
}
void
cogl_quaternion_init_identity (CoglQuaternion *quaternion)
{
quaternion->w = 1.0;
quaternion->x = 0.0;
quaternion->y = 0.0;
quaternion->z = 0.0;
}
void
cogl_quaternion_init_from_array (CoglQuaternion *quaternion,
const float *array)
{
quaternion->w = array[0];
quaternion->x = array[1];
quaternion->y = array[2];
quaternion->z = array[3];
}
void
cogl_quaternion_init_from_x_rotation (CoglQuaternion *quaternion,
float angle)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
quaternion->w = cosf (half_angle);
quaternion->x = sinf (half_angle);
quaternion->y = 0.0f;
quaternion->z = 0.0f;
}
void
cogl_quaternion_init_from_y_rotation (CoglQuaternion *quaternion,
float angle)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
quaternion->w = cosf (half_angle);
quaternion->x = 0.0f;
quaternion->y = sinf (half_angle);
quaternion->z = 0.0f;
}
void
cogl_quaternion_init_from_z_rotation (CoglQuaternion *quaternion,
float angle)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
quaternion->w = cosf (half_angle);
quaternion->x = 0.0f;
quaternion->y = 0.0f;
quaternion->z = sinf (half_angle);
}
void
cogl_quaternion_init_from_euler (CoglQuaternion *quaternion,
const CoglEuler *euler)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float sin_heading =
sinf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float sin_pitch =
sinf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float sin_roll =
sinf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float cos_heading =
cosf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float cos_pitch =
cosf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float cos_roll =
cosf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
quaternion->w =
cos_heading * cos_pitch * cos_roll +
sin_heading * sin_pitch * sin_roll;
quaternion->x =
cos_heading * sin_pitch * cos_roll +
sin_heading * cos_pitch * sin_roll;
quaternion->y =
sin_heading * cos_pitch * cos_roll -
cos_heading * sin_pitch * sin_roll;
quaternion->z =
cos_heading * cos_pitch * sin_roll -
sin_heading * sin_pitch * cos_roll;
}
void
cogl_quaternion_init_from_quaternion (CoglQuaternion *quaternion,
CoglQuaternion *src)
{
memcpy (quaternion, src, sizeof (float) * 4);
}
/* XXX: it could be nice to make something like this public... */
/*
* COGL_MATRIX_READ:
* @MATRIX: A 4x4 transformation matrix
* @ROW: The row of the value you want to read
* @COLUMN: The column of the value you want to read
*
* Reads a value from the given matrix using integers to index
* into the matrix.
*/
#define COGL_MATRIX_READ(MATRIX, ROW, COLUMN) \
(((const float *)matrix)[COLUMN * 4 + ROW])
void
cogl_quaternion_init_from_matrix (CoglQuaternion *quaternion,
const CoglMatrix *matrix)
{
/* Algorithm devised by Ken Shoemake, Ref:
* http://campar.in.tum.de/twiki/pub/Chair/DwarfTutorial/quatut.pdf
*/
/* 3D maths literature refers to the diagonal of a matrix as the
* "trace" of a matrix... */
float trace = matrix->xx + matrix->yy + matrix->zz;
float root;
if (trace > 0.0f)
{
root = sqrtf (trace + 1);
quaternion->w = root * 0.5f;
root = 0.5f / root;
quaternion->x = (matrix->zy - matrix->yz) * root;
quaternion->y = (matrix->xz - matrix->zx) * root;
quaternion->z = (matrix->yx - matrix->xy) * root;
}
else
{
#define X 0
#define Y 1
#define Z 2
#define W 3
int h = X;
if (matrix->yy > matrix->xx)
h = Y;
if (matrix->zz > COGL_MATRIX_READ (matrix, h, h))
h = Z;
switch (h)
{
#define CASE_MACRO(i, j, k, I, J, K) \
case I: \
root = sqrtf ((COGL_MATRIX_READ (matrix, I, I) - \
(COGL_MATRIX_READ (matrix, J, J) + \
COGL_MATRIX_READ (matrix, K, K))) + \
COGL_MATRIX_READ (matrix, W, W)); \
quaternion->i = root * 0.5f;\
root = 0.5f / root;\
quaternion->j = (COGL_MATRIX_READ (matrix, I, J) + \
COGL_MATRIX_READ (matrix, J, I)) * root; \
quaternion->k = (COGL_MATRIX_READ (matrix, K, I) + \
COGL_MATRIX_READ (matrix, I, K)) * root; \
quaternion->w = (COGL_MATRIX_READ (matrix, K, J) - \
COGL_MATRIX_READ (matrix, J, K)) * root;\
break
CASE_MACRO (x, y, z, X, Y, Z);
CASE_MACRO (y, z, x, Y, Z, X);
CASE_MACRO (z, x, y, Z, X, Y);
#undef CASE_MACRO
#undef X
#undef Y
#undef Z
}
}
if (matrix->ww != 1.0f)
{
float s = 1.0 / sqrtf (matrix->ww);
quaternion->w *= s;
quaternion->x *= s;
quaternion->y *= s;
quaternion->z *= s;
}
}
CoglBool
cogl_quaternion_equal (const void *v1, const void *v2)
{
const CoglQuaternion *a = v1;
const CoglQuaternion *b = v2;
_COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE);
_COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE);
if (v1 == v2)
return TRUE;
return (a->w == b->w &&
a->x == b->x &&
a->y == b->y &&
a->z == b->z);
}
CoglQuaternion *
cogl_quaternion_copy (const CoglQuaternion *src)
{
if (G_LIKELY (src))
{
CoglQuaternion *new = g_slice_new (CoglQuaternion);
memcpy (new, src, sizeof (float) * 4);
return new;
}
else
return NULL;
}
void
cogl_quaternion_free (CoglQuaternion *quaternion)
{
g_slice_free (CoglQuaternion, quaternion);
}
float
cogl_quaternion_get_rotation_angle (const CoglQuaternion *quaternion)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
/* FIXME: clamp [-1, 1] */
return 2.0f * acosf (quaternion->w) * _COGL_QUATERNION_RADIANS_TO_DEGREES;
}
void
cogl_quaternion_get_rotation_axis (const CoglQuaternion *quaternion,
float *vector3)
{
float sin_half_angle_sqr;
float one_over_sin_angle_over_2;
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
/* NB: sin²(𝜃) + cos²(𝜃) = 1 */
sin_half_angle_sqr = 1.0f - quaternion->w * quaternion->w;
if (sin_half_angle_sqr <= 0.0f)
{
/* Either an identity quaternion or numerical imprecision.
* Either way we return an arbitrary vector. */
vector3[0] = 1;
vector3[1] = 0;
vector3[2] = 0;
return;
}
/* Calculate 1 / sin(𝜃/2) */
one_over_sin_angle_over_2 = 1.0f / sqrtf (sin_half_angle_sqr);
vector3[0] = quaternion->x * one_over_sin_angle_over_2;
vector3[1] = quaternion->y * one_over_sin_angle_over_2;
vector3[2] = quaternion->z * one_over_sin_angle_over_2;
}
void
cogl_quaternion_normalize (CoglQuaternion *quaternion)
{
float slen = _COGL_QUATERNION_NORM (quaternion);
float factor = 1.0f / sqrtf (slen);
quaternion->x *= factor;
quaternion->y *= factor;
quaternion->z *= factor;
quaternion->w *= factor;
return;
}
float
cogl_quaternion_dot_product (const CoglQuaternion *a,
const CoglQuaternion *b)
{
return a->w * b->w + a->x * b->x + a->y * b->y + a->z * b->z;
}
void
cogl_quaternion_invert (CoglQuaternion *quaternion)
{
quaternion->x = -quaternion->x;
quaternion->y = -quaternion->y;
quaternion->z = -quaternion->z;
}
void
cogl_quaternion_multiply (CoglQuaternion *result,
const CoglQuaternion *a,
const CoglQuaternion *b)
{
float w = a->w;
float x = a->x;
float y = a->y;
float z = a->z;
_COGL_RETURN_IF_FAIL (b != result);
result->w = w * b->w - x * b->x - y * b->y - z * b->z;
result->x = w * b->x + x * b->w + y * b->z - z * b->y;
result->y = w * b->y + y * b->w + z * b->x - x * b->z;
result->z = w * b->z + z * b->w + x * b->y - y * b->x;
}
void
cogl_quaternion_pow (CoglQuaternion *quaternion, float exponent)
{
float half_angle;
float new_half_angle;
float factor;
/* Try and identify and nop identity quaternions to avoid
* dividing by zero */
if (fabs (quaternion->w) > 0.9999f)
return;
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
/* FIXME: clamp [-1, 1] */
/* Extract 𝜃/2 from w */
half_angle = acosf (quaternion->w);
/* Compute the new 𝜃/2 */
new_half_angle = half_angle * exponent;
/* Compute the new w value */
quaternion->w = cosf (new_half_angle);
/* And new xyz values */
factor = sinf (new_half_angle) / sinf (half_angle);
quaternion->x *= factor;
quaternion->y *= factor;
quaternion->z *= factor;
}
void
cogl_quaternion_slerp (CoglQuaternion *result,
const CoglQuaternion *a,
const CoglQuaternion *b,
float t)
{
float cos_difference;
float qb_w;
float qb_x;
float qb_y;
float qb_z;
float fa;
float fb;
_COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);
if (t == 0)
{
*result = *a;
return;
}
else if (t == 1)
{
*result = *b;
return;
}
/* compute the cosine of the angle between the two given quaternions */
cos_difference = cogl_quaternion_dot_product (a, b);
/* If negative, use -b. Two quaternions q and -q represent the same angle but
* may produce a different slerp. We choose b or -b to rotate using the acute
* angle.
*/
if (cos_difference < 0.0f)
{
qb_w = -b->w;
qb_x = -b->x;
qb_y = -b->y;
qb_z = -b->z;
cos_difference = -cos_difference;
}
else
{
qb_w = b->w;
qb_x = b->x;
qb_y = b->y;
qb_z = b->z;
}
/* If we have two unit quaternions the dot should be <= 1.0 */
g_assert (cos_difference < 1.1f);
/* Determine the interpolation factors for each quaternion, simply using
* linear interpolation for quaternions that are nearly exactly the same.
* (this will avoid divisions by zero)
*/
if (cos_difference > 0.9999f)
{
fa = 1.0f - t;
fb = t;
/* XXX: should we also normalize() at the end in this case? */
}
else
{
/* Calculate the sin of the angle between the two quaternions using the
* trig identity: sin²(𝜃) + cos²(𝜃) = 1
*/
float sin_difference = sqrtf (1.0f - cos_difference * cos_difference);
float difference = atan2f (sin_difference, cos_difference);
float one_over_sin_difference = 1.0f / sin_difference;
fa = sinf ((1.0f - t) * difference) * one_over_sin_difference;
fb = sinf (t * difference) * one_over_sin_difference;
}
/* Finally interpolate the two quaternions */
result->x = fa * a->x + fb * qb_x;
result->y = fa * a->y + fb * qb_y;
result->z = fa * a->z + fb * qb_z;
result->w = fa * a->w + fb * qb_w;
}
void
cogl_quaternion_nlerp (CoglQuaternion *result,
const CoglQuaternion *a,
const CoglQuaternion *b,
float t)
{
float cos_difference;
float qb_w;
float qb_x;
float qb_y;
float qb_z;
float fa;
float fb;
_COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);
if (t == 0)
{
*result = *a;
return;
}
else if (t == 1)
{
*result = *b;
return;
}
/* compute the cosine of the angle between the two given quaternions */
cos_difference = cogl_quaternion_dot_product (a, b);
/* If negative, use -b. Two quaternions q and -q represent the same angle but
* may produce a different slerp. We choose b or -b to rotate using the acute
* angle.
*/
if (cos_difference < 0.0f)
{
qb_w = -b->w;
qb_x = -b->x;
qb_y = -b->y;
qb_z = -b->z;
cos_difference = -cos_difference;
}
else
{
qb_w = b->w;
qb_x = b->x;
qb_y = b->y;
qb_z = b->z;
}
/* If we have two unit quaternions the dot should be <= 1.0 */
g_assert (cos_difference < 1.1f);
fa = 1.0f - t;
fb = t;
result->x = fa * a->x + fb * qb_x;
result->y = fa * a->y + fb * qb_y;
result->z = fa * a->z + fb * qb_z;
result->w = fa * a->w + fb * qb_w;
cogl_quaternion_normalize (result);
}
void
cogl_quaternion_squad (CoglQuaternion *result,
const CoglQuaternion *prev,
const CoglQuaternion *a,
const CoglQuaternion *b,
const CoglQuaternion *next,
float t)
{
CoglQuaternion slerp0;
CoglQuaternion slerp1;
cogl_quaternion_slerp (&slerp0, a, b, t);
cogl_quaternion_slerp (&slerp1, prev, next, t);
cogl_quaternion_slerp (result, &slerp0, &slerp1, 2.0f * t * (1.0f - t));
}
const CoglQuaternion *
cogl_get_static_identity_quaternion (void)
{
return &identity_quaternion;
}
const CoglQuaternion *
cogl_get_static_zero_quaternion (void)
{
return &zero_quaternion;
}