2010-02-25 01:40:29 +00:00
|
|
|
/*
|
|
|
|
* Cogl
|
|
|
|
*
|
2014-02-22 01:28:54 +00:00
|
|
|
* A Low Level GPU Graphics and Utilities API
|
2010-02-25 01:40:29 +00:00
|
|
|
*
|
|
|
|
* Copyright (C) 2010 Intel Corporation.
|
|
|
|
*
|
2014-02-22 01:28:54 +00:00
|
|
|
* Permission is hereby granted, free of charge, to any person
|
|
|
|
* obtaining a copy of this software and associated documentation
|
|
|
|
* files (the "Software"), to deal in the Software without
|
|
|
|
* restriction, including without limitation the rights to use, copy,
|
|
|
|
* modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
|
|
* of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be
|
|
|
|
* included in all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
2010-02-25 01:40:29 +00:00
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Robert Bragg <robert@linux.intel.com>
|
|
|
|
*
|
|
|
|
* Various references relating to quaternions:
|
|
|
|
*
|
|
|
|
* http://www.cs.caltech.edu/courses/cs171/quatut.pdf
|
|
|
|
* http://mathworld.wolfram.com/Quaternion.html
|
|
|
|
* http://www.gamedev.net/reference/articles/article1095.asp
|
|
|
|
* http://www.cprogramming.com/tutorial/3d/quaternions.html
|
|
|
|
* http://www.isner.com/tutorials/quatSpells/quaternion_spells_12.htm
|
|
|
|
* http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
|
|
|
|
* 3D Maths Primer for Graphics and Game Development ISBN-10: 1556229119
|
|
|
|
*/
|
|
|
|
|
2012-02-17 21:46:39 +00:00
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
#include "config.h"
|
|
|
|
#endif
|
|
|
|
|
2011-10-13 21:34:30 +00:00
|
|
|
#include <cogl-util.h>
|
2010-02-25 01:40:29 +00:00
|
|
|
#include <cogl-quaternion.h>
|
|
|
|
#include <cogl-quaternion-private.h>
|
|
|
|
#include <cogl-matrix.h>
|
|
|
|
#include <cogl-vector.h>
|
2010-02-25 01:40:29 +00:00
|
|
|
#include <cogl-euler.h>
|
2010-02-25 01:40:29 +00:00
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#define FLOAT_EPSILON 1e-03
|
|
|
|
|
|
|
|
static CoglQuaternion zero_quaternion =
|
|
|
|
{
|
|
|
|
0.0, 0.0, 0.0, 0.0,
|
|
|
|
};
|
|
|
|
|
|
|
|
static CoglQuaternion identity_quaternion =
|
|
|
|
{
|
|
|
|
1.0, 0.0, 0.0, 0.0,
|
|
|
|
};
|
|
|
|
|
2012-03-06 18:21:28 +00:00
|
|
|
/* This function is just here to be called from GDB so we don't really
|
|
|
|
want to put a declaration in a header and we just add it here to
|
|
|
|
avoid a warning */
|
|
|
|
void
|
|
|
|
_cogl_quaternion_print (CoglQuaternion *quarternion);
|
|
|
|
|
2010-02-25 01:40:29 +00:00
|
|
|
void
|
|
|
|
_cogl_quaternion_print (CoglQuaternion *quaternion)
|
|
|
|
{
|
|
|
|
g_print ("[ %6.4f (%6.4f, %6.4f, %6.4f)]\n",
|
|
|
|
quaternion->w,
|
|
|
|
quaternion->x,
|
|
|
|
quaternion->y,
|
|
|
|
quaternion->z);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_init (CoglQuaternion *quaternion,
|
|
|
|
float angle,
|
|
|
|
float x,
|
|
|
|
float y,
|
|
|
|
float z)
|
|
|
|
{
|
2012-01-13 18:23:11 +00:00
|
|
|
float axis[3] = { x, y, z};
|
|
|
|
cogl_quaternion_init_from_angle_vector (quaternion, angle, axis);
|
2010-02-25 01:40:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_init_from_angle_vector (CoglQuaternion *quaternion,
|
|
|
|
float angle,
|
2012-01-13 18:23:11 +00:00
|
|
|
const float *axis3f_in)
|
2010-02-25 01:40:29 +00:00
|
|
|
{
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
|
|
* in this form:
|
|
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
|
|
*/
|
2012-01-13 18:23:11 +00:00
|
|
|
float axis[3];
|
2010-02-25 01:40:29 +00:00
|
|
|
float half_angle;
|
|
|
|
float sin_half_angle;
|
|
|
|
|
|
|
|
/* XXX: Should we make cogl_vector3_normalize have separate in and
|
|
|
|
* out args? */
|
2012-01-13 18:23:11 +00:00
|
|
|
axis[0] = axis3f_in[0];
|
|
|
|
axis[1] = axis3f_in[1];
|
|
|
|
axis[2] = axis3f_in[2];
|
|
|
|
cogl_vector3_normalize (axis);
|
2010-02-25 01:40:29 +00:00
|
|
|
|
|
|
|
half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
|
|
|
|
sin_half_angle = sinf (half_angle);
|
|
|
|
|
|
|
|
quaternion->w = cosf (half_angle);
|
|
|
|
|
2012-01-13 18:23:11 +00:00
|
|
|
quaternion->x = axis[0] * sin_half_angle;
|
|
|
|
quaternion->y = axis[1] * sin_half_angle;
|
|
|
|
quaternion->z = axis[2] * sin_half_angle;
|
2010-02-25 01:40:29 +00:00
|
|
|
|
|
|
|
cogl_quaternion_normalize (quaternion);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_init_identity (CoglQuaternion *quaternion)
|
|
|
|
{
|
|
|
|
quaternion->w = 1.0;
|
|
|
|
|
|
|
|
quaternion->x = 0.0;
|
|
|
|
quaternion->y = 0.0;
|
|
|
|
quaternion->z = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_init_from_array (CoglQuaternion *quaternion,
|
|
|
|
const float *array)
|
|
|
|
{
|
2011-07-27 15:23:38 +00:00
|
|
|
quaternion->w = array[0];
|
|
|
|
quaternion->x = array[1];
|
|
|
|
quaternion->y = array[2];
|
|
|
|
quaternion->z = array[3];
|
2010-02-25 01:40:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_init_from_x_rotation (CoglQuaternion *quaternion,
|
|
|
|
float angle)
|
|
|
|
{
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
|
|
* in this form:
|
|
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
|
|
*/
|
|
|
|
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
|
|
|
|
|
|
|
|
quaternion->w = cosf (half_angle);
|
|
|
|
|
|
|
|
quaternion->x = sinf (half_angle);
|
|
|
|
quaternion->y = 0.0f;
|
|
|
|
quaternion->z = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_init_from_y_rotation (CoglQuaternion *quaternion,
|
|
|
|
float angle)
|
|
|
|
{
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
|
|
* in this form:
|
|
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
|
|
*/
|
|
|
|
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
|
|
|
|
|
|
|
|
quaternion->w = cosf (half_angle);
|
|
|
|
|
|
|
|
quaternion->x = 0.0f;
|
|
|
|
quaternion->y = sinf (half_angle);
|
|
|
|
quaternion->z = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_init_from_z_rotation (CoglQuaternion *quaternion,
|
|
|
|
float angle)
|
|
|
|
{
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
|
|
* in this form:
|
|
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
|
|
*/
|
|
|
|
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
|
|
|
|
|
|
|
|
quaternion->w = cosf (half_angle);
|
|
|
|
|
|
|
|
quaternion->x = 0.0f;
|
|
|
|
quaternion->y = 0.0f;
|
|
|
|
quaternion->z = sinf (half_angle);
|
|
|
|
}
|
|
|
|
|
2010-02-25 01:40:29 +00:00
|
|
|
void
|
|
|
|
cogl_quaternion_init_from_euler (CoglQuaternion *quaternion,
|
|
|
|
const CoglEuler *euler)
|
|
|
|
{
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
|
|
* in this form:
|
|
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
|
|
*/
|
|
|
|
float sin_heading =
|
|
|
|
sinf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
|
|
float sin_pitch =
|
|
|
|
sinf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
|
|
float sin_roll =
|
|
|
|
sinf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
|
|
float cos_heading =
|
|
|
|
cosf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
|
|
float cos_pitch =
|
|
|
|
cosf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
|
|
float cos_roll =
|
|
|
|
cosf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
|
|
|
|
|
|
quaternion->w =
|
|
|
|
cos_heading * cos_pitch * cos_roll +
|
|
|
|
sin_heading * sin_pitch * sin_roll;
|
|
|
|
|
|
|
|
quaternion->x =
|
|
|
|
cos_heading * sin_pitch * cos_roll +
|
|
|
|
sin_heading * cos_pitch * sin_roll;
|
|
|
|
quaternion->y =
|
|
|
|
sin_heading * cos_pitch * cos_roll -
|
|
|
|
cos_heading * sin_pitch * sin_roll;
|
|
|
|
quaternion->z =
|
|
|
|
cos_heading * cos_pitch * sin_roll -
|
|
|
|
sin_heading * sin_pitch * cos_roll;
|
|
|
|
}
|
|
|
|
|
2010-02-25 01:40:29 +00:00
|
|
|
void
|
|
|
|
cogl_quaternion_init_from_quaternion (CoglQuaternion *quaternion,
|
|
|
|
CoglQuaternion *src)
|
|
|
|
{
|
|
|
|
memcpy (quaternion, src, sizeof (float) * 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX: it could be nice to make something like this public... */
|
|
|
|
/*
|
|
|
|
* COGL_MATRIX_READ:
|
|
|
|
* @MATRIX: A 4x4 transformation matrix
|
|
|
|
* @ROW: The row of the value you want to read
|
|
|
|
* @COLUMN: The column of the value you want to read
|
|
|
|
*
|
|
|
|
* Reads a value from the given matrix using integers to index
|
|
|
|
* into the matrix.
|
|
|
|
*/
|
|
|
|
#define COGL_MATRIX_READ(MATRIX, ROW, COLUMN) \
|
|
|
|
(((const float *)matrix)[COLUMN * 4 + ROW])
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_init_from_matrix (CoglQuaternion *quaternion,
|
|
|
|
const CoglMatrix *matrix)
|
|
|
|
{
|
|
|
|
/* Algorithm devised by Ken Shoemake, Ref:
|
|
|
|
* http://campar.in.tum.de/twiki/pub/Chair/DwarfTutorial/quatut.pdf
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* 3D maths literature refers to the diagonal of a matrix as the
|
|
|
|
* "trace" of a matrix... */
|
|
|
|
float trace = matrix->xx + matrix->yy + matrix->zz;
|
|
|
|
float root;
|
|
|
|
|
|
|
|
if (trace > 0.0f)
|
|
|
|
{
|
|
|
|
root = sqrtf (trace + 1);
|
|
|
|
quaternion->w = root * 0.5f;
|
|
|
|
root = 0.5f / root;
|
|
|
|
quaternion->x = (matrix->zy - matrix->yz) * root;
|
|
|
|
quaternion->y = (matrix->xz - matrix->zx) * root;
|
|
|
|
quaternion->z = (matrix->yx - matrix->xy) * root;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
#define X 0
|
|
|
|
#define Y 1
|
|
|
|
#define Z 2
|
|
|
|
#define W 3
|
|
|
|
int h = X;
|
|
|
|
if (matrix->yy > matrix->xx)
|
|
|
|
h = Y;
|
|
|
|
if (matrix->zz > COGL_MATRIX_READ (matrix, h, h))
|
|
|
|
h = Z;
|
|
|
|
switch (h)
|
|
|
|
{
|
|
|
|
#define CASE_MACRO(i, j, k, I, J, K) \
|
|
|
|
case I: \
|
|
|
|
root = sqrtf ((COGL_MATRIX_READ (matrix, I, I) - \
|
|
|
|
(COGL_MATRIX_READ (matrix, J, J) + \
|
|
|
|
COGL_MATRIX_READ (matrix, K, K))) + \
|
|
|
|
COGL_MATRIX_READ (matrix, W, W)); \
|
|
|
|
quaternion->i = root * 0.5f;\
|
|
|
|
root = 0.5f / root;\
|
|
|
|
quaternion->j = (COGL_MATRIX_READ (matrix, I, J) + \
|
|
|
|
COGL_MATRIX_READ (matrix, J, I)) * root; \
|
|
|
|
quaternion->k = (COGL_MATRIX_READ (matrix, K, I) + \
|
|
|
|
COGL_MATRIX_READ (matrix, I, K)) * root; \
|
|
|
|
quaternion->w = (COGL_MATRIX_READ (matrix, K, J) - \
|
|
|
|
COGL_MATRIX_READ (matrix, J, K)) * root;\
|
|
|
|
break
|
|
|
|
CASE_MACRO (x, y, z, X, Y, Z);
|
|
|
|
CASE_MACRO (y, z, x, Y, Z, X);
|
|
|
|
CASE_MACRO (z, x, y, Z, X, Y);
|
|
|
|
#undef CASE_MACRO
|
|
|
|
#undef X
|
|
|
|
#undef Y
|
|
|
|
#undef Z
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (matrix->ww != 1.0f)
|
|
|
|
{
|
|
|
|
float s = 1.0 / sqrtf (matrix->ww);
|
|
|
|
quaternion->w *= s;
|
|
|
|
quaternion->x *= s;
|
|
|
|
quaternion->y *= s;
|
|
|
|
quaternion->z *= s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 20:56:40 +00:00
|
|
|
CoglBool
|
|
|
|
cogl_quaternion_equal (const void *v1, const void *v2)
|
2010-02-25 01:40:29 +00:00
|
|
|
{
|
|
|
|
const CoglQuaternion *a = v1;
|
|
|
|
const CoglQuaternion *b = v2;
|
|
|
|
|
2011-10-13 21:34:30 +00:00
|
|
|
_COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE);
|
|
|
|
_COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE);
|
2010-02-25 01:40:29 +00:00
|
|
|
|
|
|
|
if (v1 == v2)
|
|
|
|
return TRUE;
|
|
|
|
|
|
|
|
return (a->w == b->w &&
|
|
|
|
a->x == b->x &&
|
|
|
|
a->y == b->y &&
|
|
|
|
a->z == b->z);
|
|
|
|
}
|
|
|
|
|
|
|
|
CoglQuaternion *
|
|
|
|
cogl_quaternion_copy (const CoglQuaternion *src)
|
|
|
|
{
|
|
|
|
if (G_LIKELY (src))
|
|
|
|
{
|
|
|
|
CoglQuaternion *new = g_slice_new (CoglQuaternion);
|
|
|
|
memcpy (new, src, sizeof (float) * 4);
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_free (CoglQuaternion *quaternion)
|
|
|
|
{
|
|
|
|
g_slice_free (CoglQuaternion, quaternion);
|
|
|
|
}
|
|
|
|
|
|
|
|
float
|
|
|
|
cogl_quaternion_get_rotation_angle (const CoglQuaternion *quaternion)
|
|
|
|
{
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
|
|
* in this form:
|
|
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* FIXME: clamp [-1, 1] */
|
|
|
|
return 2.0f * acosf (quaternion->w) * _COGL_QUATERNION_RADIANS_TO_DEGREES;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_get_rotation_axis (const CoglQuaternion *quaternion,
|
2012-01-13 18:23:11 +00:00
|
|
|
float *vector3)
|
2010-02-25 01:40:29 +00:00
|
|
|
{
|
|
|
|
float sin_half_angle_sqr;
|
|
|
|
float one_over_sin_angle_over_2;
|
|
|
|
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
|
|
* in this form:
|
|
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* NB: sin²(𝜃) + cos²(𝜃) = 1 */
|
|
|
|
|
|
|
|
sin_half_angle_sqr = 1.0f - quaternion->w * quaternion->w;
|
|
|
|
|
|
|
|
if (sin_half_angle_sqr <= 0.0f)
|
|
|
|
{
|
|
|
|
/* Either an identity quaternion or numerical imprecision.
|
|
|
|
* Either way we return an arbitrary vector. */
|
2012-01-13 18:23:11 +00:00
|
|
|
vector3[0] = 1;
|
|
|
|
vector3[1] = 0;
|
|
|
|
vector3[2] = 0;
|
2010-02-25 01:40:29 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Calculate 1 / sin(𝜃/2) */
|
|
|
|
one_over_sin_angle_over_2 = 1.0f / sqrtf (sin_half_angle_sqr);
|
|
|
|
|
2012-01-13 18:23:11 +00:00
|
|
|
vector3[0] = quaternion->x * one_over_sin_angle_over_2;
|
|
|
|
vector3[1] = quaternion->y * one_over_sin_angle_over_2;
|
|
|
|
vector3[2] = quaternion->z * one_over_sin_angle_over_2;
|
2010-02-25 01:40:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_normalize (CoglQuaternion *quaternion)
|
|
|
|
{
|
|
|
|
float slen = _COGL_QUATERNION_NORM (quaternion);
|
|
|
|
float factor = 1.0f / sqrtf (slen);
|
|
|
|
|
|
|
|
quaternion->x *= factor;
|
|
|
|
quaternion->y *= factor;
|
|
|
|
quaternion->z *= factor;
|
|
|
|
|
|
|
|
quaternion->w *= factor;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
float
|
|
|
|
cogl_quaternion_dot_product (const CoglQuaternion *a,
|
|
|
|
const CoglQuaternion *b)
|
|
|
|
{
|
|
|
|
return a->w * b->w + a->x * b->x + a->y * b->y + a->z * b->z;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_invert (CoglQuaternion *quaternion)
|
|
|
|
{
|
|
|
|
quaternion->x = -quaternion->x;
|
|
|
|
quaternion->y = -quaternion->y;
|
|
|
|
quaternion->z = -quaternion->z;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_multiply (CoglQuaternion *result,
|
|
|
|
const CoglQuaternion *a,
|
|
|
|
const CoglQuaternion *b)
|
|
|
|
{
|
2012-07-09 16:55:58 +00:00
|
|
|
float w = a->w;
|
|
|
|
float x = a->x;
|
|
|
|
float y = a->y;
|
|
|
|
float z = a->z;
|
2010-02-25 01:40:29 +00:00
|
|
|
|
2012-07-09 16:55:58 +00:00
|
|
|
_COGL_RETURN_IF_FAIL (b != result);
|
|
|
|
|
|
|
|
result->w = w * b->w - x * b->x - y * b->y - z * b->z;
|
|
|
|
|
|
|
|
result->x = w * b->x + x * b->w + y * b->z - z * b->y;
|
|
|
|
result->y = w * b->y + y * b->w + z * b->x - x * b->z;
|
|
|
|
result->z = w * b->z + z * b->w + x * b->y - y * b->x;
|
2010-02-25 01:40:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_pow (CoglQuaternion *quaternion, float exponent)
|
|
|
|
{
|
|
|
|
float half_angle;
|
|
|
|
float new_half_angle;
|
|
|
|
float factor;
|
|
|
|
|
|
|
|
/* Try and identify and nop identity quaternions to avoid
|
|
|
|
* dividing by zero */
|
|
|
|
if (fabs (quaternion->w) > 0.9999f)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
|
|
* in this form:
|
|
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* FIXME: clamp [-1, 1] */
|
|
|
|
/* Extract 𝜃/2 from w */
|
|
|
|
half_angle = acosf (quaternion->w);
|
|
|
|
|
|
|
|
/* Compute the new 𝜃/2 */
|
|
|
|
new_half_angle = half_angle * exponent;
|
|
|
|
|
|
|
|
/* Compute the new w value */
|
|
|
|
quaternion->w = cosf (new_half_angle);
|
|
|
|
|
|
|
|
/* And new xyz values */
|
|
|
|
factor = sinf (new_half_angle) / sinf (half_angle);
|
|
|
|
quaternion->x *= factor;
|
|
|
|
quaternion->y *= factor;
|
|
|
|
quaternion->z *= factor;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_slerp (CoglQuaternion *result,
|
|
|
|
const CoglQuaternion *a,
|
|
|
|
const CoglQuaternion *b,
|
|
|
|
float t)
|
|
|
|
{
|
|
|
|
float cos_difference;
|
|
|
|
float qb_w;
|
|
|
|
float qb_x;
|
|
|
|
float qb_y;
|
|
|
|
float qb_z;
|
|
|
|
float fa;
|
|
|
|
float fb;
|
|
|
|
|
2011-10-13 21:34:30 +00:00
|
|
|
_COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);
|
2010-02-25 01:40:29 +00:00
|
|
|
|
|
|
|
if (t == 0)
|
|
|
|
{
|
|
|
|
*result = *a;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if (t == 1)
|
|
|
|
{
|
|
|
|
*result = *b;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* compute the cosine of the angle between the two given quaternions */
|
|
|
|
cos_difference = cogl_quaternion_dot_product (a, b);
|
|
|
|
|
|
|
|
/* If negative, use -b. Two quaternions q and -q represent the same angle but
|
|
|
|
* may produce a different slerp. We choose b or -b to rotate using the acute
|
|
|
|
* angle.
|
|
|
|
*/
|
|
|
|
if (cos_difference < 0.0f)
|
|
|
|
{
|
|
|
|
qb_w = -b->w;
|
|
|
|
qb_x = -b->x;
|
|
|
|
qb_y = -b->y;
|
|
|
|
qb_z = -b->z;
|
|
|
|
cos_difference = -cos_difference;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
qb_w = b->w;
|
|
|
|
qb_x = b->x;
|
|
|
|
qb_y = b->y;
|
|
|
|
qb_z = b->z;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we have two unit quaternions the dot should be <= 1.0 */
|
|
|
|
g_assert (cos_difference < 1.1f);
|
|
|
|
|
|
|
|
|
|
|
|
/* Determine the interpolation factors for each quaternion, simply using
|
|
|
|
* linear interpolation for quaternions that are nearly exactly the same.
|
|
|
|
* (this will avoid divisions by zero)
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (cos_difference > 0.9999f)
|
|
|
|
{
|
|
|
|
fa = 1.0f - t;
|
|
|
|
fb = t;
|
|
|
|
|
|
|
|
/* XXX: should we also normalize() at the end in this case? */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Calculate the sin of the angle between the two quaternions using the
|
|
|
|
* trig identity: sin²(𝜃) + cos²(𝜃) = 1
|
|
|
|
*/
|
|
|
|
float sin_difference = sqrtf (1.0f - cos_difference * cos_difference);
|
|
|
|
|
|
|
|
float difference = atan2f (sin_difference, cos_difference);
|
|
|
|
float one_over_sin_difference = 1.0f / sin_difference;
|
|
|
|
fa = sinf ((1.0f - t) * difference) * one_over_sin_difference;
|
|
|
|
fb = sinf (t * difference) * one_over_sin_difference;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finally interpolate the two quaternions */
|
|
|
|
|
|
|
|
result->x = fa * a->x + fb * qb_x;
|
|
|
|
result->y = fa * a->y + fb * qb_y;
|
|
|
|
result->z = fa * a->z + fb * qb_z;
|
|
|
|
result->w = fa * a->w + fb * qb_w;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_nlerp (CoglQuaternion *result,
|
|
|
|
const CoglQuaternion *a,
|
|
|
|
const CoglQuaternion *b,
|
|
|
|
float t)
|
|
|
|
{
|
|
|
|
float cos_difference;
|
|
|
|
float qb_w;
|
|
|
|
float qb_x;
|
|
|
|
float qb_y;
|
|
|
|
float qb_z;
|
|
|
|
float fa;
|
|
|
|
float fb;
|
|
|
|
|
2011-10-13 21:34:30 +00:00
|
|
|
_COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);
|
2010-02-25 01:40:29 +00:00
|
|
|
|
|
|
|
if (t == 0)
|
|
|
|
{
|
|
|
|
*result = *a;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if (t == 1)
|
|
|
|
{
|
|
|
|
*result = *b;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* compute the cosine of the angle between the two given quaternions */
|
|
|
|
cos_difference = cogl_quaternion_dot_product (a, b);
|
|
|
|
|
|
|
|
/* If negative, use -b. Two quaternions q and -q represent the same angle but
|
|
|
|
* may produce a different slerp. We choose b or -b to rotate using the acute
|
|
|
|
* angle.
|
|
|
|
*/
|
|
|
|
if (cos_difference < 0.0f)
|
|
|
|
{
|
|
|
|
qb_w = -b->w;
|
|
|
|
qb_x = -b->x;
|
|
|
|
qb_y = -b->y;
|
|
|
|
qb_z = -b->z;
|
|
|
|
cos_difference = -cos_difference;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
qb_w = b->w;
|
|
|
|
qb_x = b->x;
|
|
|
|
qb_y = b->y;
|
|
|
|
qb_z = b->z;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we have two unit quaternions the dot should be <= 1.0 */
|
|
|
|
g_assert (cos_difference < 1.1f);
|
|
|
|
|
|
|
|
fa = 1.0f - t;
|
|
|
|
fb = t;
|
|
|
|
|
|
|
|
result->x = fa * a->x + fb * qb_x;
|
|
|
|
result->y = fa * a->y + fb * qb_y;
|
|
|
|
result->z = fa * a->z + fb * qb_z;
|
|
|
|
result->w = fa * a->w + fb * qb_w;
|
|
|
|
|
|
|
|
cogl_quaternion_normalize (result);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cogl_quaternion_squad (CoglQuaternion *result,
|
|
|
|
const CoglQuaternion *prev,
|
|
|
|
const CoglQuaternion *a,
|
|
|
|
const CoglQuaternion *b,
|
|
|
|
const CoglQuaternion *next,
|
|
|
|
float t)
|
|
|
|
{
|
|
|
|
CoglQuaternion slerp0;
|
|
|
|
CoglQuaternion slerp1;
|
|
|
|
|
|
|
|
cogl_quaternion_slerp (&slerp0, a, b, t);
|
|
|
|
cogl_quaternion_slerp (&slerp1, prev, next, t);
|
|
|
|
cogl_quaternion_slerp (result, &slerp0, &slerp1, 2.0f * t * (1.0f - t));
|
|
|
|
}
|
|
|
|
|
|
|
|
const CoglQuaternion *
|
|
|
|
cogl_get_static_identity_quaternion (void)
|
|
|
|
{
|
|
|
|
return &identity_quaternion;
|
|
|
|
}
|
|
|
|
|
|
|
|
const CoglQuaternion *
|
|
|
|
cogl_get_static_zero_quaternion (void)
|
|
|
|
{
|
|
|
|
return &zero_quaternion;
|
|
|
|
}
|
|
|
|
|