mutter/cogl/cogl-matrix-stack.c

557 lines
15 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2009,2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*
* Authors:
* Havoc Pennington <hp@pobox.com> for litl
[cogl] Make sure we draw upside down to offscreen draw buffers First a few notes about Cogl coordinate systems: - Cogl defines the window origin, viewport origin and texture coordinates origin to be top left unlike OpenGL which defines them as bottom left. - Cogl defines the modelview and projection identity matrices in exactly the same way as OpenGL. - I.e. we believe that for 2D centric constructs: windows/framebuffers, viewports and textures developers are more used to dealing with a top left origin, but when modeling objects in 3D; an origin at the center with y going up is quite natural. The way Cogl handles textures is by uploading data upside down in OpenGL terms so that bottom left becomes top left. (Note: This also has the benefit that we don't need to flip the data we get from image decoding libraries since they typically also consider top left to be the image origin.) The viewport and window coords are mostly handled with various y = height - y tweaks before we pass y coordinates to OpenGL. Generally speaking though the handling of coordinate spaces in Cogl is a bit fragile. I guess partly because none of it was design to be, it just evolved from how Clutter defines its coordinates without much consideration or testing. I hope to improve this over a number of commits; starting here. This commit deals with the fact that offscreen draw buffers may be bound to textures but we don't "upload" the texture data upside down, and so if you texture from an offscreen draw buffer you need to manually flip the texture coordinates to get it the right way around. We now force offscreen rendering to be flipped upside down by tweaking the projection matrix right before we submit it to OpenGL to scale y by -1. The tweak is entirely hidden from the user such that if you call cogl_get_projection you will not see this scale.
2009-10-22 11:13:01 -04:00
* Robert Bragg <robert@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl-context-private.h"
#include "cogl-internal.h"
#include "cogl-matrix-stack.h"
#include "cogl-framebuffer-private.h"
#include "cogl-object-private.h"
#include "cogl-offscreen.h"
typedef struct {
CoglMatrix matrix;
CoglBool is_identity;
/* count of pushes with no changes; when a change is
* requested, we create a new state and decrement this
*/
int push_count;
} CoglMatrixState;
/**
* CoglMatrixStack:
*
* Stores a cogl-side matrix stack, which we use as a cache
* so we can get the matrix efficiently when using indirect
* rendering.
*/
struct _CoglMatrixStack
{
CoglObject _parent;
GArray *stack;
unsigned int age;
};
static void _cogl_matrix_stack_free (CoglMatrixStack *stack);
COGL_OBJECT_INTERNAL_DEFINE (MatrixStack, matrix_stack);
/* XXX: this doesn't initialize the matrix! */
static void
_cogl_matrix_state_init (CoglMatrixState *state)
{
state->push_count = 0;
state->is_identity = FALSE;
}
static CoglMatrixState *
_cogl_matrix_stack_top (CoglMatrixStack *stack)
{
return &g_array_index (stack->stack, CoglMatrixState, stack->stack->len - 1);
}
/* XXX:
* Operations like scale, translate, rotate etc need to have an
* initialized state->matrix to work with, so they will pass
* initialize = TRUE.
*
* _cogl_matrix_stack_load_identity and _cogl_matrix_stack_set on the
* other hand don't so they will pass initialize = FALSE
*
* NB: Identity matrices are represented by setting
* state->is_identity=TRUE in which case state->matrix will be
* uninitialized.
*/
static CoglMatrixState *
_cogl_matrix_stack_top_mutable (CoglMatrixStack *stack,
CoglBool initialize)
{
CoglMatrixState *state;
CoglMatrixState *new_top;
state = _cogl_matrix_stack_top (stack);
if (state->push_count == 0)
{
if (state->is_identity && initialize)
cogl_matrix_init_identity (&state->matrix);
return state;
}
state->push_count -= 1;
g_array_set_size (stack->stack, stack->stack->len + 1);
/* if g_array_set_size reallocs we need to get state
* pointer again */
state = &g_array_index (stack->stack, CoglMatrixState,
stack->stack->len - 2);
new_top = _cogl_matrix_stack_top(stack);
_cogl_matrix_state_init (new_top);
if (initialize)
{
if (state->is_identity)
cogl_matrix_init_identity (&new_top->matrix);
else
new_top->matrix = state->matrix;
}
return new_top;
}
CoglMatrixStack*
_cogl_matrix_stack_new (void)
{
CoglMatrixStack *stack;
CoglMatrixState *state;
stack = g_slice_new0 (CoglMatrixStack);
stack->stack = g_array_sized_new (FALSE, FALSE,
sizeof (CoglMatrixState), 10);
g_array_set_size (stack->stack, 1);
state = &g_array_index (stack->stack, CoglMatrixState, 0);
_cogl_matrix_state_init (state);
state->is_identity = TRUE;
stack->age = 0;
return _cogl_matrix_stack_object_new (stack);
}
static void
_cogl_matrix_stack_free (CoglMatrixStack *stack)
{
g_array_free (stack->stack, TRUE);
g_slice_free (CoglMatrixStack, stack);
}
void
_cogl_matrix_stack_push (CoglMatrixStack *stack)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top (stack);
/* we lazily create a new stack top if someone changes the matrix
* while push_count > 0
*/
state->push_count += 1;
}
void
_cogl_matrix_stack_pop (CoglMatrixStack *stack)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top (stack);
if (state->push_count > 0)
{
state->push_count -= 1;
}
else
{
if (stack->stack->len == 1)
{
g_warning ("Too many matrix pops");
return;
}
stack->age++;
g_array_set_size (stack->stack, stack->stack->len - 1);
}
}
void
_cogl_matrix_stack_load_identity (CoglMatrixStack *stack)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, FALSE);
/* NB: Identity matrices are represented by setting
* state->is_identity = TRUE and leaving state->matrix
* uninitialized.
*
* This is done to optimize the heavy usage of
* _cogl_matrix_stack_load_identity by the Cogl Journal.
*/
if (!state->is_identity)
{
state->is_identity = TRUE;
stack->age++;
}
}
void
_cogl_matrix_stack_scale (CoglMatrixStack *stack,
float x,
float y,
float z)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, TRUE);
cogl_matrix_scale (&state->matrix, x, y, z);
state->is_identity = FALSE;
stack->age++;
}
void
_cogl_matrix_stack_translate (CoglMatrixStack *stack,
float x,
float y,
float z)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, TRUE);
cogl_matrix_translate (&state->matrix, x, y, z);
state->is_identity = FALSE;
stack->age++;
}
void
_cogl_matrix_stack_rotate (CoglMatrixStack *stack,
float angle,
float x,
float y,
float z)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, TRUE);
cogl_matrix_rotate (&state->matrix, angle, x, y, z);
state->is_identity = FALSE;
stack->age++;
}
void
_cogl_matrix_stack_multiply (CoglMatrixStack *stack,
const CoglMatrix *matrix)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, TRUE);
cogl_matrix_multiply (&state->matrix, &state->matrix, matrix);
state->is_identity = FALSE;
stack->age++;
}
void
_cogl_matrix_stack_frustum (CoglMatrixStack *stack,
float left,
float right,
float bottom,
float top,
float z_near,
float z_far)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, TRUE);
cogl_matrix_frustum (&state->matrix,
left, right, bottom, top,
z_near, z_far);
state->is_identity = FALSE;
stack->age++;
}
void
_cogl_matrix_stack_perspective (CoglMatrixStack *stack,
float fov_y,
float aspect,
float z_near,
float z_far)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, TRUE);
cogl_matrix_perspective (&state->matrix,
fov_y, aspect, z_near, z_far);
state->is_identity = FALSE;
stack->age++;
}
void
_cogl_matrix_stack_ortho (CoglMatrixStack *stack,
float left,
float right,
float bottom,
float top,
float z_near,
float z_far)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, TRUE);
cogl_matrix_ortho (&state->matrix,
left, right, bottom, top, z_near, z_far);
state->is_identity = FALSE;
stack->age++;
}
CoglBool
_cogl_matrix_stack_get_inverse (CoglMatrixStack *stack,
CoglMatrix *inverse)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, TRUE);
return cogl_matrix_get_inverse (&state->matrix, inverse);
}
void
_cogl_matrix_stack_get (CoglMatrixStack *stack,
CoglMatrix *matrix)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top (stack);
/* NB: identity matrices are lazily initialized because we can often avoid
* initializing them at all if nothing is pushed on top of them since we
* load them using glLoadIdentity()
*
* The Cogl journal typically loads an identiy matrix because it performs
* software transformations, which is why we have optimized this case.
*/
if (state->is_identity)
cogl_matrix_init_identity (matrix);
else
*matrix = state->matrix;
}
void
_cogl_matrix_stack_set (CoglMatrixStack *stack,
const CoglMatrix *matrix)
{
CoglMatrixState *state;
state = _cogl_matrix_stack_top_mutable (stack, FALSE);
state->matrix = *matrix;
state->is_identity = FALSE;
stack->age++;
}
static void
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
_cogl_matrix_stack_flush_matrix_to_gl_builtin (CoglContext *ctx,
CoglBool is_identity,
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
CoglMatrix *matrix,
CoglMatrixMode mode)
{
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
g_assert (ctx->driver == COGL_DRIVER_GL ||
ctx->driver == COGL_DRIVER_GLES1);
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
#if defined (HAVE_COGL_GL) || defined (HAVE_COGL_GLES)
if (ctx->flushed_matrix_mode != mode)
{
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
GLenum gl_mode = 0;
switch (mode)
{
case COGL_MATRIX_MODELVIEW:
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
gl_mode = GL_MODELVIEW;
break;
case COGL_MATRIX_PROJECTION:
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
gl_mode = GL_PROJECTION;
break;
case COGL_MATRIX_TEXTURE:
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
gl_mode = GL_TEXTURE;
break;
}
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
GE (ctx, glMatrixMode (gl_mode));
ctx->flushed_matrix_mode = mode;
}
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
if (is_identity)
GE (ctx, glLoadIdentity ());
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
else
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
GE (ctx, glLoadMatrixf (cogl_matrix_get_array (matrix)));
#endif
}
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
void
_cogl_matrix_stack_flush_to_gl_builtins (CoglContext *ctx,
CoglMatrixStack *stack,
CoglMatrixMode mode,
CoglBool disable_flip)
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
{
g_assert (ctx->driver == COGL_DRIVER_GL ||
ctx->driver == COGL_DRIVER_GLES1);
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
#if defined (HAVE_COGL_GL) || defined (HAVE_COGL_GLES)
{
CoglBool needs_flip;
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
CoglMatrixState *state;
CoglMatrixStackCache *cache;
state = _cogl_matrix_stack_top (stack);
if (mode == COGL_MATRIX_PROJECTION)
{
/* Because Cogl defines texture coordinates to have a top left
* origin and because offscreen framebuffers may be used for
* rendering to textures we always render upside down to
* offscreen buffers. Also for some backends we need to render
* onscreen buffers upside-down too.
*/
if (disable_flip)
needs_flip = FALSE;
else
needs_flip = cogl_is_offscreen (ctx->current_draw_buffer);
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
cache = &ctx->builtin_flushed_projection;
}
else
{
needs_flip = FALSE;
if (mode == COGL_MATRIX_MODELVIEW)
cache = &ctx->builtin_flushed_modelview;
else
cache = NULL;
}
/* We don't need to do anything if the state is the same */
if (!cache ||
_cogl_matrix_stack_check_and_update_cache (stack, cache, needs_flip))
{
CoglBool is_identity = state->is_identity && !needs_flip;
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
if (needs_flip)
{
CoglMatrix flipped_matrix;
cogl_matrix_multiply (&flipped_matrix,
&ctx->y_flip_matrix,
state->is_identity ?
&ctx->identity_matrix :
&state->matrix);
_cogl_matrix_stack_flush_matrix_to_gl_builtin (ctx,
/* not identity */
FALSE,
&flipped_matrix,
mode);
}
else
_cogl_matrix_stack_flush_matrix_to_gl_builtin (ctx,
is_identity,
&state->matrix,
mode);
}
}
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
#endif
}
unsigned int
_cogl_matrix_stack_get_age (CoglMatrixStack *stack)
{
return stack->age;
}
CoglBool
_cogl_matrix_stack_has_identity_flag (CoglMatrixStack *stack)
{
return _cogl_matrix_stack_top (stack)->is_identity;
}
CoglBool
_cogl_matrix_stack_equal (CoglMatrixStack *stack0,
CoglMatrixStack *stack1)
{
CoglMatrixState *state0 = _cogl_matrix_stack_top (stack0);
CoglMatrixState *state1 = _cogl_matrix_stack_top (stack1);
if (state0->is_identity != state1->is_identity)
return FALSE;
if (state0->is_identity)
return TRUE;
else
return cogl_matrix_equal (&state0->matrix, &state1->matrix);
}
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
CoglBool
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
_cogl_matrix_stack_check_and_update_cache (CoglMatrixStack *stack,
CoglMatrixStackCache *cache,
CoglBool flip)
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
{
CoglBool is_identity =
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
_cogl_matrix_stack_has_identity_flag (stack) && !flip;
CoglBool is_dirty;
Flush matrices in the progend and flip with a vector Previously flushing the matrices was performed as part of the framebuffer state. When on GLES2 this matrix flushing is actually diverted so that it only keeps a reference to the intended matrix stack. This is necessary because on GLES2 there are no builtin uniforms so it can't actually flush the matrices until the program for the pipeline is generated. When the matrices are flushed it would store the age of modifications on the matrix stack so that it could detect when the matrix hasn't changed and avoid flushing it. This patch changes it so that the pipeline is responsible for flushing the matrices even when we are using the GL builtins. The same mechanism for detecting unmodified matrix stacks is used in all cases. There is a new CoglMatrixStackCache type which is used to store a reference to the intended matrix stack along with its last flushed age. There are now two of these attached to the CoglContext to track the flushed state for the global matrix builtins and also two for each glsl progend program state to track the flushed state for a program. The framebuffer matrix flush now just updates the intended matrix stacks without actually trying to flush. When a vertex snippet is attached to the pipeline, the GLSL vertend will now avoid using the projection matrix to flip the rendering. This is necessary because any vertex snippet may cause the projection matrix not to be used. Instead the flip is done as a forced final step by multiplying cogl_position_out by a vec4 uniform. This uniform is updated as part of the progend pre_paint depending on whether the framebuffer is offscreen or not. Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-29 09:21:07 -05:00
if (is_identity && cache->flushed_identity)
is_dirty = FALSE;
else if (cache->stack == NULL ||
cache->stack->age != cache->age ||
flip != cache->flipped)
is_dirty = TRUE;
else
is_dirty = (cache->stack != stack &&
!_cogl_matrix_stack_equal (cache->stack, stack));
/* We'll update the cache values even if the stack isn't dirty in
case the reason it wasn't dirty is because we compared the
matrices and found them to be the same. In that case updating the
cache values will avoid the comparison next time */
cache->age = stack->age;
cogl_object_ref (stack);
if (cache->stack)
cogl_object_unref (cache->stack);
cache->stack = stack;
cache->flushed_identity = is_identity;
cache->flipped = flip;
return is_dirty;
}
void
_cogl_matrix_stack_init_cache (CoglMatrixStackCache *cache)
{
cache->stack = NULL;
cache->flushed_identity = FALSE;
}
void
_cogl_matrix_stack_destroy_cache (CoglMatrixStackCache *cache)
{
if (cache->stack)
cogl_object_unref (cache->stack);
}