mutter/clutter/cogl/common/cogl-material.c

1814 lines
56 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl.h"
#include "cogl-internal.h"
#include "cogl-context.h"
#include "cogl-handle.h"
#include "cogl-material-private.h"
#include "cogl-texture-private.h"
#include "cogl-blend-string.h"
#include <glib.h>
#include <string.h>
/*
* GL/GLES compatability defines for material thingies:
*/
#ifdef HAVE_COGL_GLES2
#include "../gles/cogl-gles2-wrapper.h"
#endif
#ifdef HAVE_COGL_GL
#define glActiveTexture ctx->pf_glActiveTexture
#define glClientActiveTexture ctx->pf_glClientActiveTexture
#define glBlendFuncSeparate ctx->pf_glBlendFuncSeparate
#define glBlendEquation ctx->pf_glBlendEquation
#define glBlendColor ctx->pf_glBlendColor
#define glBlendEquationSeparate ctx->pf_glBlendEquationSeparate
#endif
static void _cogl_material_free (CoglMaterial *tex);
static void _cogl_material_layer_free (CoglMaterialLayer *layer);
COGL_HANDLE_DEFINE (Material, material);
COGL_HANDLE_DEFINE (MaterialLayer, material_layer);
/* #define DISABLE_MATERIAL_CACHE 1 */
GQuark
_cogl_material_error_quark (void)
{
return g_quark_from_static_string ("cogl-material-error-quark");
}
CoglHandle
cogl_material_new (void)
{
/* Create new - blank - material */
CoglMaterial *material = g_new0 (CoglMaterial, 1);
GLfloat *unlit = material->unlit;
GLfloat *ambient = material->ambient;
GLfloat *diffuse = material->diffuse;
GLfloat *specular = material->specular;
GLfloat *emission = material->emission;
/* Use the same defaults as the GL spec... */
unlit[0] = 1.0; unlit[1] = 1.0; unlit[2] = 1.0; unlit[3] = 1.0;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags |= COGL_MATERIAL_FLAG_DEFAULT_COLOR;
/* Use the same defaults as the GL spec... */
ambient[0] = 0.2; ambient[1] = 0.2; ambient[2] = 0.2; ambient[3] = 1.0;
diffuse[0] = 0.8; diffuse[1] = 0.8; diffuse[2] = 0.8; diffuse[3] = 1.0;
specular[0] = 0; specular[1] = 0; specular[2] = 0; specular[3] = 1.0;
emission[0] = 0; emission[1] = 0; emission[2] = 0; emission[3] = 1.0;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags |= COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL;
/* Use the same defaults as the GL spec... */
material->alpha_func = COGL_MATERIAL_ALPHA_FUNC_ALWAYS;
material->alpha_func_reference = 0.0;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags |= COGL_MATERIAL_FLAG_DEFAULT_ALPHA_FUNC;
/* Not the same as the GL default, but seems saner... */
#ifndef HAVE_COGL_GLES
material->blend_equation_rgb = GL_FUNC_ADD;
material->blend_equation_alpha = GL_FUNC_ADD;
material->blend_src_factor_alpha = GL_SRC_ALPHA;
material->blend_dst_factor_alpha = GL_ONE_MINUS_SRC_ALPHA;
material->blend_constant[0] = 0;
material->blend_constant[1] = 0;
material->blend_constant[2] = 0;
material->blend_constant[3] = 0;
#endif
material->blend_src_factor_rgb = GL_ONE;
material->blend_dst_factor_rgb = GL_ONE_MINUS_SRC_ALPHA;
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
material->flags |= COGL_MATERIAL_FLAG_DEFAULT_BLEND;
material->layers = NULL;
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
material->n_layers = 0;
return _cogl_material_handle_new (material);
}
static void
_cogl_material_free (CoglMaterial *material)
{
/* Frees material resources but its handle is not
released! Do that separately before this! */
g_list_foreach (material->layers,
(GFunc)cogl_handle_unref, NULL);
g_list_free (material->layers);
g_free (material);
}
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
static void
handle_automatic_blend_enable (CoglMaterial *material)
{
GList *tmp;
/* XXX: If we expose manual control over ENABLE_BLEND, we'll add
* a flag to know when it's user configured, so we don't trash it */
material->flags &= ~COGL_MATERIAL_FLAG_ENABLE_BLEND;
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* XXX: Uncomment this to disable all blending */
#if 0
return;
#endif
for (tmp = material->layers; tmp != NULL; tmp = tmp->next)
{
CoglMaterialLayer *layer = tmp->data;
/* NB: A layer may have a combine mode set on it but not yet have an
* associated texture. */
if (!layer->texture)
continue;
if (cogl_texture_get_format (layer->texture) & COGL_A_BIT)
material->flags |= COGL_MATERIAL_FLAG_ENABLE_BLEND;
}
if (material->unlit[3] != 1.0)
material->flags |= COGL_MATERIAL_FLAG_ENABLE_BLEND;
}
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* If primitives have been logged in the journal referencing the current
* state of this material we need to flush the journal before we can
* modify it... */
static void
_cogl_material_pre_change_notify (CoglMaterial *material)
{
if (material->journal_ref_count)
_cogl_journal_flush ();
}
void
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
cogl_material_get_color (CoglHandle handle,
CoglColor *color)
{
CoglMaterial *material;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
cogl_color_set_from_4f (color,
material->unlit[0],
material->unlit[1],
material->unlit[2],
material->unlit[3]);
}
void
cogl_material_set_color (CoglHandle handle,
const CoglColor *unlit_color)
{
CoglMaterial *material;
GLfloat unlit[4];
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
unlit[0] = cogl_color_get_red_float (unlit_color);
unlit[1] = cogl_color_get_green_float (unlit_color);
unlit[2] = cogl_color_get_blue_float (unlit_color);
unlit[3] = cogl_color_get_alpha_float (unlit_color);
if (memcmp (unlit, material->unlit, sizeof (unlit)) == 0)
return;
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
memcpy (material->unlit, unlit, sizeof (unlit));
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_COLOR;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (unlit[0] == 1.0 &&
unlit[1] == 1.0 &&
unlit[2] == 1.0 &&
unlit[3] == 1.0)
material->flags |= COGL_MATERIAL_FLAG_DEFAULT_COLOR;
handle_automatic_blend_enable (material);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
}
void
cogl_material_set_color4ub (CoglHandle handle,
guint8 red,
guint8 green,
guint8 blue,
guint8 alpha)
{
CoglColor color;
cogl_color_set_from_4ub (&color, red, green, blue, alpha);
cogl_material_set_color (handle, &color);
}
void
cogl_material_set_color4f (CoglHandle handle,
float red,
float green,
float blue,
float alpha)
{
CoglColor color;
cogl_color_set_from_4f (&color, red, green, blue, alpha);
cogl_material_set_color (handle, &color);
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
void
cogl_material_get_ambient (CoglHandle handle,
CoglColor *ambient)
{
CoglMaterial *material;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
cogl_color_set_from_4f (ambient,
material->ambient[0],
material->ambient[1],
material->ambient[2],
material->ambient[3]);
}
void
cogl_material_set_ambient (CoglHandle handle,
const CoglColor *ambient_color)
{
CoglMaterial *material;
GLfloat *ambient;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
ambient = material->ambient;
ambient[0] = cogl_color_get_red_float (ambient_color);
ambient[1] = cogl_color_get_green_float (ambient_color);
ambient[2] = cogl_color_get_blue_float (ambient_color);
ambient[3] = cogl_color_get_alpha_float (ambient_color);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL;
}
void
cogl_material_get_diffuse (CoglHandle handle,
CoglColor *diffuse)
{
CoglMaterial *material;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
cogl_color_set_from_4f (diffuse,
material->diffuse[0],
material->diffuse[1],
material->diffuse[2],
material->diffuse[3]);
}
void
cogl_material_set_diffuse (CoglHandle handle,
const CoglColor *diffuse_color)
{
CoglMaterial *material;
GLfloat *diffuse;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
diffuse = material->diffuse;
diffuse[0] = cogl_color_get_red_float (diffuse_color);
diffuse[1] = cogl_color_get_green_float (diffuse_color);
diffuse[2] = cogl_color_get_blue_float (diffuse_color);
diffuse[3] = cogl_color_get_alpha_float (diffuse_color);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL;
}
void
cogl_material_set_ambient_and_diffuse (CoglHandle handle,
const CoglColor *color)
{
cogl_material_set_ambient (handle, color);
cogl_material_set_diffuse (handle, color);
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
void
cogl_material_get_specular (CoglHandle handle,
CoglColor *specular)
{
CoglMaterial *material;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
cogl_color_set_from_4f (specular,
material->specular[0],
material->specular[1],
material->specular[2],
material->specular[3]);
}
void
cogl_material_set_specular (CoglHandle handle,
const CoglColor *specular_color)
{
CoglMaterial *material;
GLfloat *specular;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
specular = material->specular;
specular[0] = cogl_color_get_red_float (specular_color);
specular[1] = cogl_color_get_green_float (specular_color);
specular[2] = cogl_color_get_blue_float (specular_color);
specular[3] = cogl_color_get_alpha_float (specular_color);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL;
}
float
cogl_material_get_shininess (CoglHandle handle)
{
CoglMaterial *material;
g_return_val_if_fail (cogl_is_material (handle), 0);
material = _cogl_material_pointer_from_handle (handle);
return material->shininess;
}
void
cogl_material_set_shininess (CoglHandle handle,
float shininess)
{
CoglMaterial *material;
g_return_if_fail (cogl_is_material (handle));
if (shininess < 0.0 || shininess > 1.0)
g_warning ("Out of range shininess %f supplied for material\n",
shininess);
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
material->shininess = (GLfloat)shininess * 128.0;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL;
}
void
cogl_material_get_emission (CoglHandle handle,
CoglColor *emission)
{
CoglMaterial *material;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
cogl_color_set_from_4f (emission,
material->emission[0],
material->emission[1],
material->emission[2],
material->emission[3]);
}
void
cogl_material_set_emission (CoglHandle handle,
const CoglColor *emission_color)
{
CoglMaterial *material;
GLfloat *emission;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
emission = material->emission;
emission[0] = cogl_color_get_red_float (emission_color);
emission[1] = cogl_color_get_green_float (emission_color);
emission[2] = cogl_color_get_blue_float (emission_color);
emission[3] = cogl_color_get_alpha_float (emission_color);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL;
}
void
cogl_material_set_alpha_test_function (CoglHandle handle,
CoglMaterialAlphaFunc alpha_func,
float alpha_reference)
{
CoglMaterial *material;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
material->alpha_func = alpha_func;
material->alpha_func_reference = (GLfloat)alpha_reference;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_ALPHA_FUNC;
}
GLenum
arg_to_gl_blend_factor (CoglBlendStringArgument *arg)
{
if (arg->source.is_zero)
return GL_ZERO;
if (arg->factor.is_one)
return GL_ONE;
else if (arg->factor.is_src_alpha_saturate)
return GL_SRC_ALPHA_SATURATE;
else if (arg->factor.source.info->type ==
COGL_BLEND_STRING_COLOR_SOURCE_SRC_COLOR)
{
if (arg->factor.source.mask == COGL_BLEND_STRING_CHANNEL_MASK_RGB)
{
if (arg->factor.source.one_minus)
return GL_ONE_MINUS_SRC_COLOR;
else
return GL_SRC_COLOR;
}
else
{
if (arg->factor.source.one_minus)
return GL_ONE_MINUS_SRC_ALPHA;
else
return GL_SRC_ALPHA;
}
}
else if (arg->factor.source.info->type ==
COGL_BLEND_STRING_COLOR_SOURCE_DST_COLOR)
{
if (arg->factor.source.mask == COGL_BLEND_STRING_CHANNEL_MASK_RGB)
{
if (arg->factor.source.one_minus)
return GL_ONE_MINUS_DST_COLOR;
else
return GL_DST_COLOR;
}
else
{
if (arg->factor.source.one_minus)
return GL_ONE_MINUS_DST_ALPHA;
else
return GL_DST_ALPHA;
}
}
#ifndef HAVE_COGL_GLES
else if (arg->factor.source.info->type ==
COGL_BLEND_STRING_COLOR_SOURCE_CONSTANT)
{
if (arg->factor.source.mask == COGL_BLEND_STRING_CHANNEL_MASK_RGB)
{
if (arg->factor.source.one_minus)
return GL_ONE_MINUS_CONSTANT_COLOR;
else
return GL_CONSTANT_COLOR;
}
else
{
if (arg->factor.source.one_minus)
return GL_ONE_MINUS_CONSTANT_ALPHA;
else
return GL_CONSTANT_ALPHA;
}
}
#endif
g_warning ("Unable to determine valid blend factor from blend string\n");
return GL_ONE;
}
void
setup_blend_state (CoglBlendStringStatement *statement,
GLenum *blend_equation,
GLint *blend_src_factor,
GLint *blend_dst_factor)
{
#ifndef HAVE_COGL_GLES
switch (statement->function->type)
{
case COGL_BLEND_STRING_FUNCTION_ADD:
*blend_equation = GL_FUNC_ADD;
break;
/* TODO - add more */
default:
g_warning ("Unsupported blend function given");
*blend_equation = GL_FUNC_ADD;
}
#endif
*blend_src_factor = arg_to_gl_blend_factor (&statement->args[0]);
*blend_dst_factor = arg_to_gl_blend_factor (&statement->args[1]);
}
gboolean
cogl_material_set_blend (CoglHandle handle,
const char *blend_description,
GError **error)
{
CoglMaterial *material;
CoglBlendStringStatement statements[2];
CoglBlendStringStatement split[2];
CoglBlendStringStatement *rgb;
CoglBlendStringStatement *a;
GError *internal_error = NULL;
int count;
g_return_val_if_fail (cogl_is_material (handle), FALSE);
material = _cogl_material_pointer_from_handle (handle);
count =
_cogl_blend_string_compile (blend_description,
COGL_BLEND_STRING_CONTEXT_BLENDING,
statements,
&internal_error);
if (!count)
{
if (error)
g_propagate_error (error, internal_error);
else
{
g_warning ("Cannot compile blend description: %s\n",
internal_error->message);
g_error_free (internal_error);
}
return FALSE;
}
if (statements[0].mask == COGL_BLEND_STRING_CHANNEL_MASK_RGBA)
{
_cogl_blend_string_split_rgba_statement (statements,
&split[0], &split[1]);
rgb = &split[0];
a = &split[1];
}
else
{
rgb = &statements[0];
a = &statements[1];
}
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
#ifndef HAVE_COGL_GLES
setup_blend_state (rgb,
&material->blend_equation_rgb,
&material->blend_src_factor_rgb,
&material->blend_dst_factor_rgb);
setup_blend_state (a,
&material->blend_equation_alpha,
&material->blend_src_factor_alpha,
&material->blend_dst_factor_alpha);
#else
setup_blend_state (rgb,
NULL,
&material->blend_src_factor_rgb,
&material->blend_dst_factor_rgb);
#endif
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_BLEND;
return TRUE;
}
void
cogl_material_set_blend_constant (CoglHandle handle,
CoglColor *constant_color)
{
#ifndef HAVE_COGL_GLES
CoglMaterial *material;
GLfloat *constant;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
constant = material->blend_constant;
constant[0] = cogl_color_get_red_float (constant_color);
constant[1] = cogl_color_get_green_float (constant_color);
constant[2] = cogl_color_get_blue_float (constant_color);
constant[3] = cogl_color_get_alpha_float (constant_color);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
material->flags &= ~COGL_MATERIAL_FLAG_DEFAULT_BLEND;
#endif
}
/* Asserts that a layer corresponding to the given index exists. If no
* match is found, then a new empty layer is added.
*/
static CoglMaterialLayer *
_cogl_material_get_layer (CoglMaterial *material,
gint index_,
gboolean create_if_not_found)
{
CoglMaterialLayer *layer;
GList *tmp;
CoglHandle layer_handle;
for (tmp = material->layers; tmp != NULL; tmp = tmp->next)
{
layer =
_cogl_material_layer_pointer_from_handle ((CoglHandle)tmp->data);
if (layer->index == index_)
return layer;
/* The layers are always sorted, so at this point we know this layer
* doesn't exist */
if (layer->index > index_)
break;
}
/* NB: if we now insert a new layer before tmp, that will maintain order.
*/
if (!create_if_not_found)
return NULL;
layer = g_new0 (CoglMaterialLayer, 1);
layer_handle = _cogl_material_layer_handle_new (layer);
layer->index = index_;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
layer->flags = COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 11:04:57 -04:00
layer->mag_filter = COGL_MATERIAL_FILTER_LINEAR;
layer->min_filter = COGL_MATERIAL_FILTER_LINEAR;
layer->texture = COGL_INVALID_HANDLE;
/* Choose the same default combine mode as OpenGL:
* MODULATE(PREVIOUS[RGBA],TEXTURE[RGBA]) */
layer->texture_combine_rgb_func = GL_MODULATE;
layer->texture_combine_rgb_src[0] = GL_PREVIOUS;
layer->texture_combine_rgb_src[1] = GL_TEXTURE;
layer->texture_combine_rgb_op[0] = GL_SRC_COLOR;
layer->texture_combine_rgb_op[1] = GL_SRC_COLOR;
layer->texture_combine_alpha_func = GL_MODULATE;
layer->texture_combine_alpha_src[0] = GL_PREVIOUS;
layer->texture_combine_alpha_src[1] = GL_TEXTURE;
layer->texture_combine_alpha_op[0] = GL_SRC_ALPHA;
layer->texture_combine_alpha_op[1] = GL_SRC_ALPHA;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
cogl_matrix_init_identity (&layer->matrix);
/* Note: see comment after for() loop above */
material->layers =
g_list_insert_before (material->layers, tmp, layer_handle);
return layer;
}
void
cogl_material_set_layer (CoglHandle material_handle,
gint layer_index,
CoglHandle texture_handle)
{
CoglMaterial *material;
CoglMaterialLayer *layer;
g_return_if_fail (cogl_is_material (material_handle));
g_return_if_fail (texture_handle == COGL_INVALID_HANDLE
|| cogl_is_texture (texture_handle));
material = _cogl_material_pointer_from_handle (material_handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
layer = _cogl_material_get_layer (material_handle, layer_index, TRUE);
if (texture_handle == layer->texture)
return;
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
material->n_layers = g_list_length (material->layers);
if (material->n_layers >= CGL_MAX_COMBINED_TEXTURE_IMAGE_UNITS)
{
if (!(material->flags & COGL_MATERIAL_FLAG_SHOWN_SAMPLER_WARNING))
{
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
g_warning ("Your hardware does not have enough texture samplers"
"to handle this many texture layers");
material->flags |= COGL_MATERIAL_FLAG_SHOWN_SAMPLER_WARNING;
}
/* Note: We always make a best effort attempt to display as many
* layers as possible, so this isn't an _error_ */
/* Note: in the future we may support enabling/disabling layers
* too, so it may become valid to add more than
* MAX_COMBINED_TEXTURE_IMAGE_UNITS layers. */
}
if (texture_handle)
cogl_handle_ref (texture_handle);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (layer->texture)
cogl_handle_unref (layer->texture);
layer->texture = texture_handle;
handle_automatic_blend_enable (material);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
layer->flags |= COGL_MATERIAL_LAYER_FLAG_DIRTY;
}
static void
setup_texture_combine_state (CoglBlendStringStatement *statement,
GLint *texture_combine_func,
GLint *texture_combine_src,
GLint *texture_combine_op)
{
int i;
switch (statement->function->type)
{
case COGL_BLEND_STRING_FUNCTION_AUTO_COMPOSITE:
*texture_combine_func = GL_MODULATE; /* FIXME */
break;
case COGL_BLEND_STRING_FUNCTION_REPLACE:
*texture_combine_func = GL_REPLACE;
break;
case COGL_BLEND_STRING_FUNCTION_MODULATE:
*texture_combine_func = GL_MODULATE;
break;
case COGL_BLEND_STRING_FUNCTION_ADD:
*texture_combine_func = GL_ADD;
break;
case COGL_BLEND_STRING_FUNCTION_ADD_SIGNED:
*texture_combine_func = GL_ADD_SIGNED;
break;
case COGL_BLEND_STRING_FUNCTION_INTERPOLATE:
*texture_combine_func = GL_INTERPOLATE;
break;
case COGL_BLEND_STRING_FUNCTION_SUBTRACT:
*texture_combine_func = GL_SUBTRACT;
break;
case COGL_BLEND_STRING_FUNCTION_DOT3_RGB:
*texture_combine_func = GL_DOT3_RGB;
break;
case COGL_BLEND_STRING_FUNCTION_DOT3_RGBA:
*texture_combine_func = GL_DOT3_RGBA;
break;
}
for (i = 0; i < statement->function->argc; i++)
{
CoglBlendStringArgument *arg = &statement->args[i];
switch (arg->source.info->type)
{
case COGL_BLEND_STRING_COLOR_SOURCE_CONSTANT:
texture_combine_src[i] = GL_CONSTANT;
break;
case COGL_BLEND_STRING_COLOR_SOURCE_TEXTURE:
texture_combine_src[i] = GL_TEXTURE;
break;
case COGL_BLEND_STRING_COLOR_SOURCE_TEXTURE_N:
texture_combine_src[i] =
GL_TEXTURE0 + arg->source.texture;
break;
case COGL_BLEND_STRING_COLOR_SOURCE_PRIMARY:
texture_combine_src[i] = GL_PRIMARY_COLOR;
break;
case COGL_BLEND_STRING_COLOR_SOURCE_PREVIOUS:
texture_combine_src[i] = GL_PREVIOUS;
break;
default:
g_warning ("Unexpected texture combine source");
texture_combine_src[i] = GL_TEXTURE;
}
if (arg->source.mask == COGL_BLEND_STRING_CHANNEL_MASK_RGB)
{
if (statement->args[i].source.one_minus)
texture_combine_op[i] = GL_ONE_MINUS_SRC_COLOR;
else
texture_combine_op[i] = GL_SRC_COLOR;
}
else
{
if (statement->args[i].source.one_minus)
texture_combine_op[i] = GL_ONE_MINUS_SRC_ALPHA;
else
texture_combine_op[i] = GL_SRC_ALPHA;
}
}
}
gboolean
cogl_material_set_layer_combine (CoglHandle handle,
gint layer_index,
const char *combine_description,
GError **error)
{
CoglMaterial *material;
CoglMaterialLayer *layer;
CoglBlendStringStatement statements[2];
CoglBlendStringStatement split[2];
CoglBlendStringStatement *rgb;
CoglBlendStringStatement *a;
GError *internal_error = NULL;
int count;
g_return_val_if_fail (cogl_is_material (handle), FALSE);
material = _cogl_material_pointer_from_handle (handle);
layer = _cogl_material_get_layer (material, layer_index, TRUE);
count =
_cogl_blend_string_compile (combine_description,
COGL_BLEND_STRING_CONTEXT_TEXTURE_COMBINE,
statements,
&internal_error);
if (!count)
{
if (error)
g_propagate_error (error, internal_error);
else
{
g_warning ("Cannot compile combine description: %s\n",
internal_error->message);
g_error_free (internal_error);
}
return FALSE;
}
if (statements[0].mask == COGL_BLEND_STRING_CHANNEL_MASK_RGBA)
{
_cogl_blend_string_split_rgba_statement (statements,
&split[0], &split[1]);
rgb = &split[0];
a = &split[1];
}
else
{
rgb = &statements[0];
a = &statements[1];
}
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
setup_texture_combine_state (rgb,
&layer->texture_combine_rgb_func,
layer->texture_combine_rgb_src,
layer->texture_combine_rgb_op);
setup_texture_combine_state (a,
&layer->texture_combine_alpha_func,
layer->texture_combine_alpha_src,
layer->texture_combine_alpha_op);
layer->flags |= COGL_MATERIAL_LAYER_FLAG_DIRTY;
layer->flags &= ~COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE;
return TRUE;
}
void
cogl_material_set_layer_combine_constant (CoglHandle handle,
gint layer_index,
CoglColor *constant_color)
{
CoglMaterial *material;
CoglMaterialLayer *layer;
GLfloat *constant;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
layer = _cogl_material_get_layer (material, layer_index, TRUE);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
constant = layer->texture_combine_constant;
constant[0] = cogl_color_get_red_float (constant_color);
constant[1] = cogl_color_get_green_float (constant_color);
constant[2] = cogl_color_get_blue_float (constant_color);
constant[3] = cogl_color_get_alpha_float (constant_color);
layer->flags |= COGL_MATERIAL_LAYER_FLAG_DIRTY;
layer->flags &= ~COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE;
}
void
cogl_material_set_layer_matrix (CoglHandle material_handle,
gint layer_index,
CoglMatrix *matrix)
{
CoglMaterial *material;
CoglMaterialLayer *layer;
g_return_if_fail (cogl_is_material (material_handle));
material = _cogl_material_pointer_from_handle (material_handle);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
layer = _cogl_material_get_layer (material, layer_index, TRUE);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
layer->matrix = *matrix;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
layer->flags |= COGL_MATERIAL_LAYER_FLAG_DIRTY;
layer->flags |= COGL_MATERIAL_LAYER_FLAG_HAS_USER_MATRIX;
layer->flags &= ~COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE;
}
static void
_cogl_material_layer_free (CoglMaterialLayer *layer)
{
if (layer->texture != COGL_INVALID_HANDLE)
cogl_handle_unref (layer->texture);
g_free (layer);
}
void
cogl_material_remove_layer (CoglHandle material_handle,
gint layer_index)
{
CoglMaterial *material;
CoglMaterialLayer *layer;
GList *tmp;
g_return_if_fail (cogl_is_material (material_handle));
material = _cogl_material_pointer_from_handle (material_handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
for (tmp = material->layers; tmp != NULL; tmp = tmp->next)
{
layer = tmp->data;
if (layer->index == layer_index)
{
CoglHandle handle = (CoglHandle) layer;
cogl_handle_unref (handle);
material->layers = g_list_remove (material->layers, layer);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
material->n_layers--;
break;
}
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
handle_automatic_blend_enable (material);
}
/* XXX: This API is hopfully just a stop-gap solution. Ideally cogl_enable
* will be replaced. */
gulong
_cogl_material_get_cogl_enable_flags (CoglHandle material_handle)
{
CoglMaterial *material;
gulong enable_flags = 0;
_COGL_GET_CONTEXT (ctx, 0);
g_return_val_if_fail (cogl_is_material (material_handle), 0);
material = _cogl_material_pointer_from_handle (material_handle);
/* Enable blending if the geometry has an associated alpha color,
* or the material wants blending enabled. */
if (material->flags & COGL_MATERIAL_FLAG_ENABLE_BLEND)
enable_flags |= COGL_ENABLE_BLEND;
return enable_flags;
}
/* It's a bit out of the ordinary to return a const GList *, but it's
* probably sensible to try and avoid list manipulation for every
* primitive emitted in a scene, every frame.
*
* Alternatively; we could either add a _foreach function, or maybe
* a function that gets a passed a buffer (that may be stack allocated)
* by the caller.
*/
const GList *
cogl_material_get_layers (CoglHandle material_handle)
{
CoglMaterial *material;
g_return_val_if_fail (cogl_is_material (material_handle), NULL);
material = _cogl_material_pointer_from_handle (material_handle);
return material->layers;
}
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
int
cogl_material_get_n_layers (CoglHandle material_handle)
{
CoglMaterial *material;
g_return_val_if_fail (cogl_is_material (material_handle), 0);
material = _cogl_material_pointer_from_handle (material_handle);
return material->n_layers;
}
CoglMaterialLayerType
cogl_material_layer_get_type (CoglHandle layer_handle)
{
return COGL_MATERIAL_LAYER_TYPE_TEXTURE;
}
CoglHandle
cogl_material_layer_get_texture (CoglHandle layer_handle)
{
CoglMaterialLayer *layer;
g_return_val_if_fail (cogl_is_material_layer (layer_handle),
COGL_INVALID_HANDLE);
layer = _cogl_material_layer_pointer_from_handle (layer_handle);
return layer->texture;
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
gulong
_cogl_material_layer_get_flags (CoglHandle layer_handle)
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
{
CoglMaterialLayer *layer;
g_return_val_if_fail (cogl_is_material_layer (layer_handle), 0);
layer = _cogl_material_layer_pointer_from_handle (layer_handle);
return layer->flags & COGL_MATERIAL_LAYER_FLAG_HAS_USER_MATRIX;
}
static guint
get_n_args_for_combine_func (GLint func)
{
switch (func)
{
case GL_REPLACE:
return 1;
case GL_MODULATE:
case GL_ADD:
case GL_ADD_SIGNED:
case GL_SUBTRACT:
case GL_DOT3_RGB:
case GL_DOT3_RGBA:
return 2;
case GL_INTERPOLATE:
return 3;
}
return 0;
}
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 11:04:57 -04:00
static gboolean
is_mipmap_filter (CoglMaterialFilter filter)
{
return (filter == COGL_MATERIAL_FILTER_NEAREST_MIPMAP_NEAREST
|| filter == COGL_MATERIAL_FILTER_LINEAR_MIPMAP_NEAREST
|| filter == COGL_MATERIAL_FILTER_NEAREST_MIPMAP_LINEAR
|| filter == COGL_MATERIAL_FILTER_LINEAR_MIPMAP_LINEAR);
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
static void
_cogl_material_layer_flush_gl_sampler_state (CoglMaterialLayer *layer,
CoglLayerInfo *gl_layer_info)
{
int n_rgb_func_args;
int n_alpha_func_args;
#ifndef DISABLE_MATERIAL_CACHE
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (!(gl_layer_info &&
gl_layer_info->flags & COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE &&
layer->flags & COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE))
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
{
GE (glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE));
/* Set the combiner functions... */
GE (glTexEnvi (GL_TEXTURE_ENV,
GL_COMBINE_RGB,
layer->texture_combine_rgb_func));
GE (glTexEnvi (GL_TEXTURE_ENV,
GL_COMBINE_ALPHA,
layer->texture_combine_alpha_func));
/*
* Setup the function arguments...
*/
/* For the RGB components... */
n_rgb_func_args =
get_n_args_for_combine_func (layer->texture_combine_rgb_func);
GE (glTexEnvi (GL_TEXTURE_ENV, GL_SRC0_RGB,
layer->texture_combine_rgb_src[0]));
GE (glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB,
layer->texture_combine_rgb_op[0]));
if (n_rgb_func_args > 1)
{
GE (glTexEnvi (GL_TEXTURE_ENV, GL_SRC1_RGB,
layer->texture_combine_rgb_src[1]));
GE (glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB,
layer->texture_combine_rgb_op[1]));
}
if (n_rgb_func_args > 2)
{
GE (glTexEnvi (GL_TEXTURE_ENV, GL_SRC2_RGB,
layer->texture_combine_rgb_src[2]));
GE (glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_RGB,
layer->texture_combine_rgb_op[2]));
}
/* For the Alpha component */
n_alpha_func_args =
get_n_args_for_combine_func (layer->texture_combine_alpha_func);
GE (glTexEnvi (GL_TEXTURE_ENV, GL_SRC0_ALPHA,
layer->texture_combine_alpha_src[0]));
GE (glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA,
layer->texture_combine_alpha_op[0]));
if (n_alpha_func_args > 1)
{
GE (glTexEnvi (GL_TEXTURE_ENV, GL_SRC1_ALPHA,
layer->texture_combine_alpha_src[1]));
GE (glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA,
layer->texture_combine_alpha_op[1]));
}
if (n_alpha_func_args > 2)
{
GE (glTexEnvi (GL_TEXTURE_ENV, GL_SRC2_ALPHA,
layer->texture_combine_alpha_src[2]));
GE (glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_ALPHA,
layer->texture_combine_alpha_op[2]));
}
GE (glTexEnvfv (GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR,
layer->texture_combine_constant));
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
}
#ifndef DISABLE_MATERIAL_CACHE
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (gl_layer_info &&
(gl_layer_info->flags & COGL_MATERIAL_LAYER_FLAG_HAS_USER_MATRIX ||
layer->flags & COGL_MATERIAL_LAYER_FLAG_HAS_USER_MATRIX))
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
{
_cogl_set_current_matrix (COGL_MATRIX_TEXTURE);
_cogl_current_matrix_load (&layer->matrix);
_cogl_set_current_matrix (COGL_MATRIX_MODELVIEW);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
}
}
/*
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
* _cogl_material_flush_layers_gl_state:
* @fallback_mask: is a bitmask of the material layers that need to be
* replaced with the default, fallback textures. The fallback textures are
* fully transparent textures so they hopefully wont contribute to the
* texture combining.
*
* The intention of fallbacks is to try and preserve
* the number of layers the user is expecting so that texture coordinates
* they gave will mostly still correspond to the textures they intended, and
* have a fighting chance of looking close to their originally intended
* result.
*
* @disable_mask: is a bitmask of the material layers that will simply have
* texturing disabled. It's only really intended for disabling all layers
* > X; i.e. we'd expect to see a contiguous run of 0 starting from the LSB
* and at some point the remaining bits flip to 1. It might work to disable
* arbitrary layers; though I'm not sure a.t.m how OpenGL would take to
* that.
*
* The intention of the disable_mask is for emitting geometry when the user
* hasn't supplied enough texture coordinates for all the layers and it's
* not possible to auto generate default texture coordinates for those
* layers.
*
* @layer0_override_texture: forcibly tells us to bind this GL texture name for
* layer 0 instead of plucking the gl_texture from the CoglTexture of layer
* 0.
*
* The intention of this is for any geometry that supports sliced textures.
* The code will can iterate each of the slices and re-flush the material
* forcing the GL texture of each slice in turn.
*
* XXX: It might also help if we could specify a texture matrix for code
* dealing with slicing that would be multiplied with the users own matrix.
*
* Normaly texture coords in the range [0, 1] refer to the extents of the
* texture, but when your GL texture represents a slice of the real texture
* (from the users POV) then a texture matrix would be a neat way of
* transforming the mapping for each slice.
*
* Currently for textured rectangles we manually calculate the texture
* coords for each slice based on the users given coords, but this solution
* isn't ideal, and can't be used with CoglVertexBuffers.
*/
static void
_cogl_material_flush_layers_gl_state (CoglMaterial *material,
guint32 fallback_mask,
guint32 disable_mask,
GLuint layer0_override_texture)
{
GList *tmp;
int i;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
for (tmp = material->layers, i = 0; tmp != NULL; tmp = tmp->next, i++)
{
CoglHandle layer_handle = (CoglHandle)tmp->data;
CoglMaterialLayer *layer =
_cogl_material_layer_pointer_from_handle (layer_handle);
CoglLayerInfo *gl_layer_info = NULL;
CoglLayerInfo new_gl_layer_info;
CoglHandle tex_handle;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
GLuint gl_texture;
GLenum gl_target;
#ifdef HAVE_COGL_GLES2
GLenum gl_internal_format;
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
new_gl_layer_info.layer0_overridden =
layer0_override_texture ? TRUE : FALSE;
new_gl_layer_info.fallback =
(fallback_mask & (1<<i)) ? TRUE : FALSE;
new_gl_layer_info.disabled =
(disable_mask & (1<<i)) ? TRUE : FALSE;
tex_handle = layer->texture;
cogl_texture_get_gl_texture (tex_handle, &gl_texture, &gl_target);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (new_gl_layer_info.layer0_overridden)
gl_texture = layer0_override_texture;
else if (new_gl_layer_info.fallback)
{
if (gl_target == GL_TEXTURE_2D)
tex_handle = ctx->default_gl_texture_2d_tex;
#ifdef HAVE_COGL_GL
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
else if (gl_target == GL_TEXTURE_RECTANGLE_ARB)
tex_handle = ctx->default_gl_texture_rect_tex;
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
else
{
g_warning ("We don't have a default texture we can use to fill "
"in for an invalid material layer, since it was "
"using an unsupported texture target ");
/* might get away with this... */
tex_handle = ctx->default_gl_texture_2d_tex;
}
cogl_texture_get_gl_texture (tex_handle, &gl_texture, NULL);
}
#ifdef HAVE_COGL_GLES2
{
CoglTexture *tex =
_cogl_texture_pointer_from_handle (tex_handle);
gl_internal_format = tex->gl_intformat;
}
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
GE (glActiveTexture (GL_TEXTURE0 + i));
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 11:04:57 -04:00
_cogl_texture_set_filters (layer->texture,
layer->min_filter,
layer->mag_filter);
if (is_mipmap_filter (layer->min_filter)
|| is_mipmap_filter (layer->mag_filter))
_cogl_texture_ensure_mipmaps (layer->texture);
/* FIXME: We could be more clever here and only bind the texture
if it is different from gl_layer_info->gl_texture to avoid
redundant GL calls. However a few other places in Cogl and
Clutter call glBindTexture such as ClutterGLXTexturePixmap so
we'd need to ensure they affect the cache. Also deleting a
texture should clear it from the cache in case a new texture
is generated with the same number */
#ifdef HAVE_COGL_GLES2
cogl_gles2_wrapper_bind_texture (gl_target,
gl_texture,
gl_internal_format);
#else
GE (glBindTexture (gl_target, gl_texture));
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
/* XXX: Once we add caching for glBindTexture state, these
* checks should be moved back up to the top of the loop!
*/
if (i < ctx->current_layers->len)
{
gl_layer_info =
&g_array_index (ctx->current_layers, CoglLayerInfo, i);
#ifndef DISABLE_MATERIAL_CACHE
if (gl_layer_info->handle == layer_handle &&
!(layer->flags & COGL_MATERIAL_LAYER_FLAG_DIRTY) &&
!(gl_layer_info->layer0_overridden ||
new_gl_layer_info.layer0_overridden) &&
(gl_layer_info->fallback
== new_gl_layer_info.fallback) &&
(gl_layer_info->disabled
== new_gl_layer_info.disabled))
{
continue;
}
#endif
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
/* Disable the previous target if it was different */
#ifndef DISABLE_MATERIAL_CACHE
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (gl_layer_info &&
gl_layer_info->gl_target != gl_target &&
!gl_layer_info->disabled)
{
GE (glDisable (gl_layer_info->gl_target));
}
#else
if (gl_layer_info)
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
GE (glDisable (gl_layer_info->gl_target));
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
/* Enable/Disable the new target */
if (!new_gl_layer_info.disabled)
{
#ifndef DISABLE_MATERIAL_CACHE
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (!(gl_layer_info &&
gl_layer_info->gl_target == gl_target &&
!gl_layer_info->disabled))
#endif
{
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* XXX: Debug: Comment this out to disable all texturing: */
#if 1
GE (glEnable (gl_target));
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
#endif
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
}
else
{
#ifndef DISABLE_MATERIAL_CACHE
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (!(gl_layer_info &&
gl_layer_info->gl_target == gl_target &&
gl_layer_info->disabled))
#endif
{
GE (glDisable (gl_target));
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
}
_cogl_material_layer_flush_gl_sampler_state (layer, gl_layer_info);
new_gl_layer_info.handle = layer_handle;
new_gl_layer_info.flags = layer->flags;
new_gl_layer_info.gl_target = gl_target;
new_gl_layer_info.gl_texture = gl_texture;
if (i < ctx->current_layers->len)
*gl_layer_info = new_gl_layer_info;
else
g_array_append_val (ctx->current_layers, new_gl_layer_info);
layer->flags &= ~COGL_MATERIAL_LAYER_FLAG_DIRTY;
if ((i+1) >= CGL_MAX_COMBINED_TEXTURE_IMAGE_UNITS)
break;
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
/* Disable additional texture units that may have previously been in use.. */
for (; i < ctx->current_layers->len; i++)
{
CoglLayerInfo *gl_layer_info =
&g_array_index (ctx->current_layers, CoglLayerInfo, i);
#ifndef DISABLE_MATERIAL_CACHE
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (!gl_layer_info->disabled)
#endif
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
{
GE (glActiveTexture (GL_TEXTURE0 + i));
GE (glDisable (gl_layer_info->gl_target));
gl_layer_info->disabled = TRUE;
}
}
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
static void
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
_cogl_material_flush_base_gl_state (CoglMaterial *material,
gboolean skip_gl_color)
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* XXX:
* Currently we only don't update state when the flags indicate that the
* current material uses the defaults, and the new material also uses the
* defaults, but we could do deeper comparisons of state. */
if (!skip_gl_color)
{
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
if (!(ctx->current_material_flags & COGL_MATERIAL_FLAG_DEFAULT_COLOR
&& material->flags & COGL_MATERIAL_FLAG_DEFAULT_COLOR) ||
/* Assume if we were previously told to skip the color, then
* the current color needs updating... */
ctx->current_material_flush_options.flags &
COGL_MATERIAL_FLUSH_SKIP_GL_COLOR)
{
GE (glColor4f (material->unlit[0],
material->unlit[1],
material->unlit[2],
material->unlit[3]));
}
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (!(ctx->current_material_flags & COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL
&& material->flags & COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL))
{
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
/* FIXME - we only need to set these if lighting is enabled... */
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_AMBIENT, material->ambient));
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_DIFFUSE, material->diffuse));
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_SPECULAR, material->specular));
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_EMISSION, material->emission));
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_SHININESS, &material->shininess));
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (!(ctx->current_material_flags & COGL_MATERIAL_FLAG_DEFAULT_ALPHA_FUNC
&& material->flags & COGL_MATERIAL_FLAG_DEFAULT_ALPHA_FUNC))
{
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
/* NB: Currently the Cogl defines are compatible with the GL ones: */
GE (glAlphaFunc (material->alpha_func, material->alpha_func_reference));
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
if (!(ctx->current_material_flags & COGL_MATERIAL_FLAG_DEFAULT_BLEND
&& material->flags & COGL_MATERIAL_FLAG_DEFAULT_BLEND))
{
#if defined (HAVE_COGL_GLES2)
gboolean have_blend_equation_seperate = TRUE;
#elif defined (HAVE_COGL_GL)
gboolean have_blend_equation_seperate = FALSE;
if (ctx->pf_glBlendEquationSeparate) /* Only GL 2.0 + */
have_blend_equation_seperate = TRUE;
#endif
#ifndef HAVE_COGL_GLES /* GLES 1 only has glBlendFunc */
if (material->blend_src_factor_rgb != material->blend_src_factor_alpha
|| (material->blend_src_factor_rgb !=
material->blend_src_factor_alpha))
{
if (have_blend_equation_seperate &&
material->blend_equation_rgb != material->blend_equation_alpha)
GE (glBlendEquationSeparate (material->blend_equation_rgb,
material->blend_equation_alpha));
else
GE (glBlendEquation (material->blend_equation_rgb));
GE (glBlendFuncSeparate (material->blend_src_factor_rgb,
material->blend_dst_factor_rgb,
material->blend_src_factor_alpha,
material->blend_dst_factor_alpha));
GE (glBlendColor (material->blend_constant[0],
material->blend_constant[1],
material->blend_constant[2],
material->blend_constant[3]));
}
else
#endif
GE (glBlendFunc (material->blend_src_factor_rgb,
material->blend_dst_factor_rgb));
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
}
void
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
_cogl_material_flush_gl_state (CoglHandle handle,
CoglMaterialFlushOptions *options)
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
{
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
CoglMaterial *material;
guint32 fallback_layers = 0;
guint32 disable_layers = 0;
GLuint layer0_override_texture = 0;
gboolean skip_gl_color = FALSE;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
if (options)
{
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
if (options->flags & COGL_MATERIAL_FLUSH_FALLBACK_MASK)
fallback_layers = options->fallback_layers;
if (options->flags & COGL_MATERIAL_FLUSH_DISABLE_MASK)
disable_layers = options->disable_layers;
if (options->flags & COGL_MATERIAL_FLUSH_LAYER0_OVERRIDE)
layer0_override_texture = options->layer0_override_texture;
if (options->flags & COGL_MATERIAL_FLUSH_SKIP_GL_COLOR)
skip_gl_color = TRUE;
}
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
_cogl_material_flush_base_gl_state (material,
skip_gl_color);
_cogl_material_flush_layers_gl_state (material,
fallback_layers,
disable_layers,
layer0_override_texture);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
/* NB: we have to take a reference so that next time
* cogl_material_flush_gl_state is called, we can compare the incomming
* material pointer with ctx->current_material
*/
cogl_handle_ref (handle);
if (ctx->current_material)
cogl_handle_unref (ctx->current_material);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
ctx->current_material = handle;
ctx->current_material_flags = material->flags;
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
if (options)
ctx->current_material_flush_options = *options;
else
memset (&ctx->current_material_flush_options,
0, sizeof (CoglMaterialFlushOptions));
}
gboolean
_cogl_material_equal (CoglHandle material0_handle,
CoglMaterialFlushOptions *material0_flush_options,
CoglHandle material1_handle,
CoglMaterialFlushOptions *material1_flush_options,
CoglMaterialEqualFlags flags)
{
CoglMaterial *material0;
CoglMaterial *material1;
GList *l0, *l1;
if (!(flags & COGL_MATERIAL_EQUAL_FLAGS_ASSERT_ALL_DEFAULTS))
{
g_critical ("FIXME: _cogl_material_equal doesn't yet support "
"deep comparisons of materials");
return FALSE;
}
/* Note: the following code is written with the assumption this
* constraint will go away*/
material0 = _cogl_material_pointer_from_handle (material0_handle);
material1 = _cogl_material_pointer_from_handle (material1_handle);
if (!((material0_flush_options->flags & COGL_MATERIAL_FLUSH_SKIP_GL_COLOR &&
material1_flush_options->flags & COGL_MATERIAL_FLUSH_SKIP_GL_COLOR)))
{
if ((material0->flags & COGL_MATERIAL_FLAG_DEFAULT_COLOR) !=
(material1->flags & COGL_MATERIAL_FLAG_DEFAULT_COLOR))
return FALSE;
else if (flags & COGL_MATERIAL_EQUAL_FLAGS_ASSERT_ALL_DEFAULTS &&
!(material0->flags & COGL_MATERIAL_FLAG_DEFAULT_COLOR))
return FALSE;
else if (!memcmp (material0->unlit, material1->unlit,
sizeof (material0->unlit)))
return FALSE;
}
if ((material0->flags & COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL) !=
(material1->flags & COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL))
return FALSE;
else if (flags & COGL_MATERIAL_EQUAL_FLAGS_ASSERT_ALL_DEFAULTS &&
!(material0->flags & COGL_MATERIAL_FLAG_DEFAULT_GL_MATERIAL))
return FALSE;
#if 0
else if (!_deep_are_gl_materials_equal ())
return FALSE;
#endif
if ((material0->flags & COGL_MATERIAL_FLAG_DEFAULT_ALPHA_FUNC) !=
(material1->flags & COGL_MATERIAL_FLAG_DEFAULT_ALPHA_FUNC))
return FALSE;
else if (flags & COGL_MATERIAL_EQUAL_FLAGS_ASSERT_ALL_DEFAULTS &&
!(material0->flags & COGL_MATERIAL_FLAG_DEFAULT_ALPHA_FUNC))
return FALSE;
#if 0
else if (!_deep_are_alpha_funcs_equal ())
return FALSE;
#endif
if ((material0->flags & COGL_MATERIAL_FLAG_ENABLE_BLEND) !=
(material1->flags & COGL_MATERIAL_FLAG_ENABLE_BLEND))
return FALSE;
/* XXX: potentially blending could be "enabled" but the blend mode
* could be equivalent to being disabled. */
if (material0->flags & COGL_MATERIAL_FLAG_ENABLE_BLEND)
{
if ((material0->flags & COGL_MATERIAL_FLAG_DEFAULT_BLEND) !=
(material1->flags & COGL_MATERIAL_FLAG_DEFAULT_BLEND))
return FALSE;
else if (flags & COGL_MATERIAL_EQUAL_FLAGS_ASSERT_ALL_DEFAULTS &&
!(material0->flags & COGL_MATERIAL_FLAG_DEFAULT_BLEND))
return FALSE;
#if 0
else if (!_deep_is_blend_equal ())
return FALSE;
#endif
}
if (material0_flush_options->fallback_layers !=
material1_flush_options->fallback_layers ||
material0_flush_options->disable_layers !=
material1_flush_options->disable_layers)
return FALSE;
l0 = material0->layers;
l1 = material1->layers;
while (l0 && l1)
{
CoglMaterialLayer *layer0;
CoglMaterialLayer *layer1;
if ((l0 == NULL && l1 != NULL) ||
(l1 == NULL && l0 != NULL))
return FALSE;
layer0 = l0->data;
layer1 = l1->data;
if (layer0->texture != layer1->texture)
return FALSE;
if ((layer0->flags & COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE) !=
(layer1->flags & COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE))
return FALSE;
else if (flags & COGL_MATERIAL_EQUAL_FLAGS_ASSERT_ALL_DEFAULTS &&
!(layer0->flags & COGL_MATERIAL_LAYER_FLAG_DEFAULT_COMBINE))
return FALSE;
#if 0
else if (!_deep_are_layer_combines_equal ())
return FALSE;
#endif
l0 = l0->next;
l1 = l1->next;
}
if ((l0 == NULL && l1 != NULL) ||
(l1 == NULL && l0 != NULL))
return FALSE;
return TRUE;
}
/* While a material is referenced by the Cogl journal we can not allow
* modifications, so this gives us a mechanism to track journal
* references separately */
CoglHandle
_cogl_material_journal_ref (CoglHandle material_handle)
{
CoglMaterial *material =
material = _cogl_material_pointer_from_handle (material_handle);
material->journal_ref_count++;
cogl_handle_ref (material_handle);
return material_handle;
}
void
_cogl_material_journal_unref (CoglHandle material_handle)
{
CoglMaterial *material =
material = _cogl_material_pointer_from_handle (material_handle);
material->journal_ref_count--;
cogl_handle_unref (material_handle);
}
/* TODO: Should go in cogl.c, but that implies duplication which is also
* not ideal. */
void
cogl_set_source (CoglHandle material_handle)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
g_return_if_fail (cogl_is_material (material_handle));
if (ctx->source_material == material_handle)
return;
cogl_handle_ref (material_handle);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
if (ctx->source_material)
cogl_handle_unref (ctx->source_material);
ctx->source_material = material_handle;
}
/* TODO: add cogl_set_front_source (), and cogl_set_back_source () */
void
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
cogl_set_source_texture (CoglHandle texture_handle)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
CoglColor white;
g_return_if_fail (texture_handle != COGL_INVALID_HANDLE);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 11:15:40 -05:00
cogl_material_set_layer (ctx->default_material, 0, texture_handle);
cogl_color_set_from_4ub (&white, 0xff, 0xff, 0xff, 0xff);
cogl_material_set_color (ctx->default_material, &white);
cogl_set_source (ctx->default_material);
}
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 11:04:57 -04:00
CoglMaterialFilter
cogl_material_layer_get_min_filter (CoglHandle layer_handle)
{
CoglMaterialLayer *layer;
g_return_val_if_fail (cogl_is_material_layer (layer_handle), 0);
layer = _cogl_material_layer_pointer_from_handle (layer_handle);
return layer->min_filter;
}
CoglMaterialFilter
cogl_material_layer_get_mag_filter (CoglHandle layer_handle)
{
CoglMaterialLayer *layer;
g_return_val_if_fail (cogl_is_material_layer (layer_handle), 0);
layer = _cogl_material_layer_pointer_from_handle (layer_handle);
return layer->mag_filter;
}
void
cogl_material_set_layer_filters (CoglHandle handle,
gint layer_index,
CoglMaterialFilter min_filter,
CoglMaterialFilter mag_filter)
{
CoglMaterial *material;
CoglMaterialLayer *layer;
g_return_if_fail (cogl_is_material (handle));
material = _cogl_material_pointer_from_handle (handle);
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes Previously the journal was always flushed at the end of _cogl_rectangles_with_multitexture_coords, (i.e. the end of any cogl_rectangle* calls) but now we have broadened the potential for batching geometry. In ideal circumstances we will only flush once per scene. In summary the journal works like this: When you use any of the cogl_rectangle* APIs then nothing is emitted to the GPU at this point, we just log one or more quads into the journal. A journal entry consists of the quad coordinates, an associated material reference, and a modelview matrix. Ideally the journal only gets flushed once at the end of a scene, but in fact there are things to consider that may cause unwanted flushing, including: - modifying materials mid-scene This is because each quad in the journal has an associated material reference (i.e. not copy), so if you try and modify a material that is already referenced in the journal we force a flush first) NOTE: For now this means you should avoid using cogl_set_source_color() since that currently uses a single shared material. Later we should change it to use a pool of materials that is recycled when the journal is flushed. - modifying any state that isn't currently logged, such as depth, fog and backface culling enables. The first thing that happens when flushing, is to upload all the vertex data associated with the journal into a single VBO. We then go through a process of splitting up the journal into batches that have compatible state so they can be emitted to the GPU together. This is currently broken up into 3 levels so we can stagger the state changes: 1) we break the journal up according to changes in the number of material layers associated with logged quads. The number of layers in a material determines the stride of the associated vertices, so we have to update our vertex array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc) 2) we further split batches up according to material compatability. (e.g. materials with different textures) We flush material state at this level. 3) Finally we split batches up according to modelview changes. At this level we update the modelview matrix and actually emit the actual draw command. This commit is largely about putting the initial design in-place; this will be followed by other changes that take advantage of the extended batching.
2009-06-17 13:46:42 -04:00
/* possibly flush primitives referencing the current state... */
_cogl_material_pre_change_notify (material);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 11:04:57 -04:00
layer = _cogl_material_get_layer (material, layer_index, TRUE);
layer->min_filter = min_filter;
layer->mag_filter = mag_filter;
}