mutter/cogl/cogl-pipeline-opengl.c

1203 lines
40 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2008,2009,2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
*
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl.h"
#include "cogl-debug.h"
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
#include "cogl-pipeline-opengl-private.h"
#include "cogl-pipeline-private.h"
#include "cogl-context.h"
#include "cogl-texture-private.h"
#include <glib.h>
#include <string.h>
/*
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* GL/GLES compatability defines for pipeline thingies:
*/
#ifdef HAVE_COGL_GLES2
#include "../gles/cogl-gles2-wrapper.h"
#endif
#ifdef HAVE_COGL_GL
#define glActiveTexture ctx->drv.pf_glActiveTexture
#define glClientActiveTexture ctx->drv.pf_glClientActiveTexture
#define glBlendFuncSeparate ctx->drv.pf_glBlendFuncSeparate
#define glBlendEquation ctx->drv.pf_glBlendEquation
#define glBlendColor ctx->drv.pf_glBlendColor
#define glBlendEquationSeparate ctx->drv.pf_glBlendEquationSeparate
#define glProgramString ctx->drv.pf_glProgramString
#define glBindProgram ctx->drv.pf_glBindProgram
#define glDeletePrograms ctx->drv.pf_glDeletePrograms
#define glGenPrograms ctx->drv.pf_glGenPrograms
#define glProgramLocalParameter4fv ctx->drv.pf_glProgramLocalParameter4fv
#define glUseProgram ctx->drv.pf_glUseProgram
#endif
/* These aren't defined in the GLES headers */
#ifndef GL_POINT_SPRITE
#define GL_POINT_SPRITE 0x8861
#endif
#ifndef GL_COORD_REPLACE
#define GL_COORD_REPLACE 0x8862
#endif
#ifndef GL_CLAMP_TO_BORDER
#define GL_CLAMP_TO_BORDER 0x812d
#endif
static void
texture_unit_init (CoglTextureUnit *unit, int index_)
{
unit->index = index_;
unit->enabled = FALSE;
unit->current_gl_target = 0;
unit->gl_texture = 0;
unit->is_foreign = FALSE;
unit->dirty_gl_texture = FALSE;
unit->matrix_stack = _cogl_matrix_stack_new ();
unit->layer = NULL;
unit->layer_changes_since_flush = 0;
unit->texture_storage_changed = FALSE;
}
static void
texture_unit_free (CoglTextureUnit *unit)
{
if (unit->layer)
cogl_object_unref (unit->layer);
_cogl_matrix_stack_destroy (unit->matrix_stack);
}
CoglTextureUnit *
_cogl_get_texture_unit (int index_)
{
_COGL_GET_CONTEXT (ctx, NULL);
if (ctx->texture_units->len < (index_ + 1))
{
int i;
int prev_len = ctx->texture_units->len;
ctx->texture_units = g_array_set_size (ctx->texture_units, index_ + 1);
for (i = prev_len; i <= index_; i++)
{
CoglTextureUnit *unit =
&g_array_index (ctx->texture_units, CoglTextureUnit, i);
texture_unit_init (unit, i);
}
}
return &g_array_index (ctx->texture_units, CoglTextureUnit, index_);
}
void
_cogl_destroy_texture_units (void)
{
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
for (i = 0; i < ctx->texture_units->len; i++)
{
CoglTextureUnit *unit =
&g_array_index (ctx->texture_units, CoglTextureUnit, i);
texture_unit_free (unit);
}
g_array_free (ctx->texture_units, TRUE);
}
void
_cogl_set_active_texture_unit (int unit_index)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (ctx->active_texture_unit != unit_index)
{
GE (glActiveTexture (GL_TEXTURE0 + unit_index));
ctx->active_texture_unit = unit_index;
}
}
void
_cogl_disable_texture_unit (int unit_index)
{
CoglTextureUnit *unit;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
unit = &g_array_index (ctx->texture_units, CoglTextureUnit, unit_index);
if (unit->enabled)
{
_cogl_set_active_texture_unit (unit_index);
GE (glDisable (unit->current_gl_target));
unit->enabled = FALSE;
}
}
/* Note: _cogl_bind_gl_texture_transient conceptually has slightly
* different semantics to OpenGL's glBindTexture because Cogl never
* cares about tracking multiple textures bound to different targets
* on the same texture unit.
*
* glBindTexture lets you bind multiple textures to a single texture
* unit if they are bound to different targets. So it does something
* like:
* unit->current_texture[target] = texture;
*
* Cogl only lets you associate one texture with the currently active
* texture unit, so the target is basically a redundant parameter
* that's implicitly set on that texture.
*
* Technically this is just a thin wrapper around glBindTexture so
* actually it does have the GL semantics but it seems worth
* mentioning the conceptual difference in case anyone wonders why we
* don't associate the gl_texture with a gl_target in the
* CoglTextureUnit.
*/
void
_cogl_bind_gl_texture_transient (GLenum gl_target,
GLuint gl_texture,
gboolean is_foreign)
{
CoglTextureUnit *unit;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* We choose to always make texture unit 1 active for transient
* binds so that in the common case where multitexturing isn't used
* we can simply ignore the state of this texture unit. Notably we
* didn't use a large texture unit (.e.g. (GL_MAX_TEXTURE_UNITS - 1)
* in case the driver doesn't have a sparse data structure for
* texture units.
*/
_cogl_set_active_texture_unit (1);
unit = _cogl_get_texture_unit (1);
/* NB: If we have previously bound a foreign texture to this texture
* unit we don't know if that texture has since been deleted and we
* are seeing the texture name recycled */
if (unit->gl_texture == gl_texture &&
!unit->dirty_gl_texture &&
!unit->is_foreign)
return;
GE (glBindTexture (gl_target, gl_texture));
unit->dirty_gl_texture = TRUE;
unit->is_foreign = is_foreign;
}
void
_cogl_delete_gl_texture (GLuint gl_texture)
{
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
for (i = 0; i < ctx->texture_units->len; i++)
{
CoglTextureUnit *unit =
&g_array_index (ctx->texture_units, CoglTextureUnit, i);
if (unit->gl_texture == gl_texture)
{
unit->gl_texture = 0;
unit->dirty_gl_texture = FALSE;
}
}
GE (glDeleteTextures (1, &gl_texture));
}
/* Whenever the underlying GL texture storage of a CoglTexture is
* changed (e.g. due to migration out of a texture atlas) then we are
* notified. This lets us ensure that we reflush that texture's state
* if it is reused again with the same texture unit.
*/
void
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_texture_storage_change_notify (CoglHandle texture)
{
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
for (i = 0; i < ctx->texture_units->len; i++)
{
CoglTextureUnit *unit =
&g_array_index (ctx->texture_units, CoglTextureUnit, i);
if (unit->layer &&
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_layer_get_texture (unit->layer) == texture)
unit->texture_storage_changed = TRUE;
/* NB: the texture may be bound to multiple texture units so
* we continue to check the rest */
}
}
void
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_use_program (GLuint gl_program, CoglPipelineProgramType type)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
/* If we're changing program type... */
if (type != ctx->current_use_program_type)
{
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
/* ... disable the old type */
switch (ctx->current_use_program_type)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
case COGL_PIPELINE_PROGRAM_TYPE_GLSL:
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
GE( glUseProgram (0) );
ctx->current_gl_program = 0;
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
break;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
case COGL_PIPELINE_PROGRAM_TYPE_ARBFP:
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
#ifdef HAVE_COGL_GL
GE( glDisable (GL_FRAGMENT_PROGRAM_ARB) );
#endif
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
break;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
case COGL_PIPELINE_PROGRAM_TYPE_FIXED:
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
/* don't need to to anything */
break;
}
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
/* ... and enable the new type */
switch (type)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
case COGL_PIPELINE_PROGRAM_TYPE_ARBFP:
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
#ifdef HAVE_COGL_GL
GE( glEnable (GL_FRAGMENT_PROGRAM_ARB) );
#endif
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
break;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
case COGL_PIPELINE_PROGRAM_TYPE_GLSL:
case COGL_PIPELINE_PROGRAM_TYPE_FIXED:
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
/* don't need to to anything */
break;
}
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (type == COGL_PIPELINE_PROGRAM_TYPE_GLSL)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
#ifdef COGL_PIPELINE_BACKEND_GLSL
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
if (ctx->current_gl_program != gl_program)
{
GLenum gl_error;
while ((gl_error = glGetError ()) != GL_NO_ERROR)
;
glUseProgram (gl_program);
if (glGetError () == GL_NO_ERROR)
ctx->current_gl_program = gl_program;
else
{
GE( glUseProgram (0) );
ctx->current_gl_program = 0;
}
}
#else
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
g_warning ("Unexpected use of GLSL backend!");
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
#endif /* COGL_PIPELINE_BACKEND_GLSL */
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
#ifndef COGL_PIPELINE_BACKEND_ARBFP
else if (type == COGL_PIPELINE_PROGRAM_TYPE_ARBFP)
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
g_warning ("Unexpected use of ARBFP backend!");
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
#endif /* COGL_PIPELINE_BACKEND_ARBFP */
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 13:00:29 -04:00
ctx->current_use_program_type = type;
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
#if defined (COGL_PIPELINE_BACKEND_GLSL) || \
defined (COGL_PIPELINE_BACKEND_ARBFP)
int
_cogl_get_max_texture_image_units (void)
{
_COGL_GET_CONTEXT (ctx, 0);
/* This function is called quite often so we cache the value to
avoid too many GL calls */
if (G_UNLIKELY (ctx->max_texture_image_units == -1))
{
ctx->max_texture_image_units = 1;
GE (glGetIntegerv (GL_MAX_TEXTURE_IMAGE_UNITS,
&ctx->max_texture_image_units));
}
return ctx->max_texture_image_units;
}
#endif
#ifndef HAVE_COGL_GLES
static gboolean
blend_factor_uses_constant (GLenum blend_factor)
{
return (blend_factor == GL_CONSTANT_COLOR ||
blend_factor == GL_ONE_MINUS_CONSTANT_COLOR ||
blend_factor == GL_CONSTANT_ALPHA ||
blend_factor == GL_ONE_MINUS_CONSTANT_ALPHA);
}
#endif
static void
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
flush_depth_state (CoglPipelineDepthState *depth_state)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (ctx->depth_test_function_cache != depth_state->depth_test_function)
{
GE (glDepthFunc (depth_state->depth_test_function));
ctx->depth_test_function_cache = depth_state->depth_test_function;
}
if (ctx->depth_writing_enabled_cache != depth_state->depth_writing_enabled)
{
GE (glDepthMask (depth_state->depth_writing_enabled ?
GL_TRUE : GL_FALSE));
ctx->depth_writing_enabled_cache = depth_state->depth_writing_enabled;
}
#ifndef COGL_HAS_GLES
if (ctx->depth_range_near_cache != depth_state->depth_range_near ||
ctx->depth_range_far_cache != depth_state->depth_range_far)
{
#ifdef COGL_HAS_GLES2
GE (glDepthRangef (depth_state->depth_range_near,
depth_state->depth_range_far));
#else
GE (glDepthRange (depth_state->depth_range_near,
depth_state->depth_range_far));
#endif
ctx->depth_range_near_cache = depth_state->depth_range_near;
ctx->depth_range_far_cache = depth_state->depth_range_far;
}
#endif /* COGL_HAS_GLES */
}
static void
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_flush_color_blend_alpha_depth_state (
CoglPipeline *pipeline,
unsigned long pipelines_difference,
gboolean skip_gl_color)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (!skip_gl_color)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if ((pipelines_difference & COGL_PIPELINE_STATE_COLOR) ||
/* Assume if we were previously told to skip the color, then
* the current color needs updating... */
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
ctx->current_pipeline_skip_gl_color)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipeline *authority =
_cogl_pipeline_get_authority (pipeline, COGL_PIPELINE_STATE_COLOR);
GE (glColor4ub (cogl_color_get_red_byte (&authority->color),
cogl_color_get_green_byte (&authority->color),
cogl_color_get_blue_byte (&authority->color),
cogl_color_get_alpha_byte (&authority->color)));
}
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (pipelines_difference & COGL_PIPELINE_STATE_LIGHTING)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipeline *authority =
_cogl_pipeline_get_authority (pipeline, COGL_PIPELINE_STATE_LIGHTING);
CoglPipelineLightingState *lighting_state =
&authority->big_state->lighting_state;
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_AMBIENT, lighting_state->ambient));
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_DIFFUSE, lighting_state->diffuse));
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_SPECULAR, lighting_state->specular));
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_EMISSION, lighting_state->emission));
GE (glMaterialfv (GL_FRONT_AND_BACK, GL_SHININESS,
&lighting_state->shininess));
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (pipelines_difference & COGL_PIPELINE_STATE_BLEND)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipeline *authority =
_cogl_pipeline_get_authority (pipeline, COGL_PIPELINE_STATE_BLEND);
CoglPipelineBlendState *blend_state =
&authority->big_state->blend_state;
#if defined (HAVE_COGL_GLES2)
gboolean have_blend_equation_seperate = TRUE;
gboolean have_blend_func_separate = TRUE;
#elif defined (HAVE_COGL_GL)
gboolean have_blend_equation_seperate = FALSE;
gboolean have_blend_func_separate = FALSE;
if (ctx->drv.pf_glBlendEquationSeparate) /* Only GL 2.0 + */
have_blend_equation_seperate = TRUE;
if (ctx->drv.pf_glBlendFuncSeparate) /* Only GL 1.4 + */
have_blend_func_separate = TRUE;
#endif
#ifndef HAVE_COGL_GLES /* GLES 1 only has glBlendFunc */
if (blend_factor_uses_constant (blend_state->blend_src_factor_rgb) ||
blend_factor_uses_constant (blend_state->blend_src_factor_alpha) ||
blend_factor_uses_constant (blend_state->blend_dst_factor_rgb) ||
blend_factor_uses_constant (blend_state->blend_dst_factor_alpha))
{
float red =
cogl_color_get_red_float (&blend_state->blend_constant);
float green =
cogl_color_get_green_float (&blend_state->blend_constant);
float blue =
cogl_color_get_blue_float (&blend_state->blend_constant);
float alpha =
cogl_color_get_alpha_float (&blend_state->blend_constant);
GE (glBlendColor (red, green, blue, alpha));
}
if (have_blend_equation_seperate &&
blend_state->blend_equation_rgb != blend_state->blend_equation_alpha)
GE (glBlendEquationSeparate (blend_state->blend_equation_rgb,
blend_state->blend_equation_alpha));
else
GE (glBlendEquation (blend_state->blend_equation_rgb));
if (have_blend_func_separate &&
(blend_state->blend_src_factor_rgb != blend_state->blend_src_factor_alpha ||
(blend_state->blend_src_factor_rgb !=
blend_state->blend_src_factor_alpha)))
GE (glBlendFuncSeparate (blend_state->blend_src_factor_rgb,
blend_state->blend_dst_factor_rgb,
blend_state->blend_src_factor_alpha,
blend_state->blend_dst_factor_alpha));
else
#endif
GE (glBlendFunc (blend_state->blend_src_factor_rgb,
blend_state->blend_dst_factor_rgb));
}
/* Under GLES2 the alpha function is implemented as part of the
fragment shader */
#ifndef HAVE_COGL_GLES2
if (pipelines_difference & (COGL_PIPELINE_STATE_ALPHA_FUNC |
COGL_PIPELINE_STATE_ALPHA_FUNC_REFERENCE))
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipeline *authority =
_cogl_pipeline_get_authority (pipeline, COGL_PIPELINE_STATE_ALPHA_FUNC);
CoglPipelineAlphaFuncState *alpha_state =
&authority->big_state->alpha_state;
/* NB: Currently the Cogl defines are compatible with the GL ones: */
GE (glAlphaFunc (alpha_state->alpha_func,
alpha_state->alpha_func_reference));
}
#endif /* HAVE_COGL_GLES2 */
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (pipelines_difference & COGL_PIPELINE_STATE_DEPTH)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipeline *authority =
_cogl_pipeline_get_authority (pipeline, COGL_PIPELINE_STATE_DEPTH);
CoglPipelineDepthState *depth_state = &authority->big_state->depth_state;
if (depth_state->depth_test_enabled)
{
if (ctx->depth_test_enabled_cache != TRUE)
{
GE (glEnable (GL_DEPTH_TEST));
ctx->depth_test_enabled_cache = depth_state->depth_test_enabled;
}
flush_depth_state (depth_state);
}
else if (ctx->depth_test_enabled_cache != FALSE)
{
GE (glDisable (GL_DEPTH_TEST));
ctx->depth_test_enabled_cache = depth_state->depth_test_enabled;
}
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (pipelines_difference & COGL_PIPELINE_STATE_POINT_SIZE)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipeline *authority =
_cogl_pipeline_get_authority (pipeline, COGL_PIPELINE_STATE_POINT_SIZE);
if (ctx->point_size_cache != authority->big_state->point_size)
{
GE( glPointSize (authority->big_state->point_size) );
ctx->point_size_cache = authority->big_state->point_size;
}
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (pipeline->real_blend_enable != ctx->gl_blend_enable_cache)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (pipeline->real_blend_enable)
GE (glEnable (GL_BLEND));
else
GE (glDisable (GL_BLEND));
/* XXX: we shouldn't update any other blend state if blending
* is disabled! */
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
ctx->gl_blend_enable_cache = pipeline->real_blend_enable;
}
}
static int
get_max_activateable_texture_units (void)
{
_COGL_GET_CONTEXT (ctx, 0);
if (G_UNLIKELY (ctx->max_activateable_texture_units == -1))
{
#ifdef HAVE_COGL_GL
GLint max_tex_coords;
GLint max_combined_tex_units;
GE (glGetIntegerv (GL_MAX_TEXTURE_COORDS, &max_tex_coords));
GE (glGetIntegerv (GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS,
&max_combined_tex_units));
ctx->max_activateable_texture_units =
MAX (max_tex_coords - 1, max_combined_tex_units);
#else
GE (glGetIntegerv (GL_MAX_TEXTURE_UNITS,
&ctx->max_activateable_texture_units));
#endif
}
return ctx->max_activateable_texture_units;
}
typedef struct
{
int i;
unsigned long *layer_differences;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
} CoglPipelineFlushLayerState;
static gboolean
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
flush_layers_common_gl_state_cb (CoglPipelineLayer *layer, void *user_data)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineFlushLayerState *flush_state = user_data;
int unit_index = flush_state->i;
CoglTextureUnit *unit = _cogl_get_texture_unit (unit_index);
unsigned long layers_difference =
flush_state->layer_differences[unit_index];
_COGL_GET_CONTEXT (ctx, FALSE);
/* There may not be enough texture units so we can bail out if
* that's the case...
*/
if (G_UNLIKELY (unit_index >= get_max_activateable_texture_units ()))
{
static gboolean shown_warning = FALSE;
if (!shown_warning)
{
g_warning ("Your hardware does not have enough texture units"
"to handle this many texture layers");
shown_warning = TRUE;
}
return FALSE;
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (layers_difference & COGL_PIPELINE_LAYER_STATE_TEXTURE)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineLayer *authority =
_cogl_pipeline_layer_get_authority (layer,
COGL_PIPELINE_LAYER_STATE_TEXTURE);
CoglHandle texture;
GLuint gl_texture;
GLenum gl_target;
texture = (authority->texture == COGL_INVALID_HANDLE ?
ctx->default_gl_texture_2d_tex :
authority->texture);
cogl_texture_get_gl_texture (texture,
&gl_texture,
&gl_target);
_cogl_set_active_texture_unit (unit_index);
/* NB: There are several Cogl components and some code in
* Clutter that will temporarily bind arbitrary GL textures to
* query and modify texture object parameters. If you look at
* _cogl_bind_gl_texture_transient() you can see we make sure
* that such code always binds to texture unit 1 which means we
* can't rely on the unit->gl_texture state if unit->index == 1.
*
* Because texture unit 1 is a bit special we actually defer any
* necessary glBindTexture for it until the end of
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* _cogl_pipeline_flush_gl_state().
*
* NB: we get notified whenever glDeleteTextures is used (see
* _cogl_delete_gl_texture()) where we invalidate
* unit->gl_texture references to deleted textures so it's safe
* to compare unit->gl_texture with gl_texture. (Without the
* hook it would be possible to delete a GL texture and create a
* new one with the same name and comparing unit->gl_texture and
* gl_texture wouldn't detect that.)
*
* NB: for foreign textures we don't know how the deletion of
* the GL texture objects correspond to the deletion of the
* CoglTextures so if there was previously a foreign texture
* associated with the texture unit then we can't assume that we
* aren't seeing a recycled texture name so we have to bind.
*/
if (unit->gl_texture != gl_texture || unit->is_foreign)
{
if (unit_index == 1)
unit->dirty_gl_texture = TRUE;
else
GE (glBindTexture (gl_target, gl_texture));
unit->gl_texture = gl_texture;
}
unit->is_foreign = _cogl_texture_is_foreign (texture);
/* Disable the previous target if it was different and it's
* still enabled */
if (unit->enabled && unit->current_gl_target != gl_target)
GE (glDisable (unit->current_gl_target));
if (!G_UNLIKELY (cogl_debug_flags & COGL_DEBUG_DISABLE_TEXTURING) &&
(!unit->enabled || unit->current_gl_target != gl_target))
{
GE (glEnable (gl_target));
unit->enabled = TRUE;
unit->current_gl_target = gl_target;
}
/* The texture_storage_changed boolean indicates if the
* CoglTexture's underlying GL texture storage has changed since
* it was flushed to the texture unit. We've just flushed the
* latest state so we can reset this. */
unit->texture_storage_changed = FALSE;
}
else
{
/* Even though there may be no difference between the last flushed
* texture state and the current layers texture state it may be that the
* texture unit has been disabled for some time so we need to assert that
* it's enabled now.
*/
if (!G_UNLIKELY (cogl_debug_flags & COGL_DEBUG_DISABLE_TEXTURING) &&
!unit->enabled)
{
_cogl_set_active_texture_unit (unit_index);
GE (glEnable (unit->current_gl_target));
unit->enabled = TRUE;
}
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (layers_difference & COGL_PIPELINE_LAYER_STATE_USER_MATRIX)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineLayerState state = COGL_PIPELINE_LAYER_STATE_USER_MATRIX;
CoglPipelineLayer *authority =
_cogl_pipeline_layer_get_authority (layer, state);
_cogl_matrix_stack_set (unit->matrix_stack,
&authority->big_state->matrix);
_cogl_matrix_stack_flush_to_gl (unit->matrix_stack, COGL_MATRIX_TEXTURE);
}
/* Under GLES2 the fragment shader will use gl_PointCoord instead of
replacing the texture coordinates */
#ifndef HAVE_COGL_GLES2
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (layers_difference & COGL_PIPELINE_LAYER_STATE_POINT_SPRITE_COORDS)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineState change = COGL_PIPELINE_LAYER_STATE_POINT_SPRITE_COORDS;
CoglPipelineLayer *authority =
_cogl_pipeline_layer_get_authority (layer, change);
CoglPipelineLayerBigState *big_state = authority->big_state;
_cogl_set_active_texture_unit (unit_index);
GE (glTexEnvi (GL_POINT_SPRITE, GL_COORD_REPLACE,
big_state->point_sprite_coords));
}
#endif /* HAVE_COGL_GLES2 */
cogl_handle_ref (layer);
if (unit->layer != COGL_INVALID_HANDLE)
cogl_handle_unref (unit->layer);
unit->layer = layer;
unit->layer_changes_since_flush = 0;
flush_state->i++;
return TRUE;
}
static void
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_flush_common_gl_state (CoglPipeline *pipeline,
unsigned long pipelines_difference,
unsigned long *layer_differences,
gboolean skip_gl_color)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineFlushLayerState state;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_flush_color_blend_alpha_depth_state (pipeline,
pipelines_difference,
skip_gl_color);
state.i = 0;
state.layer_differences = layer_differences;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_foreach_layer_internal (pipeline,
flush_layers_common_gl_state_cb,
&state);
/* Disable additional texture units that may have previously been in use.. */
for (; state.i < ctx->texture_units->len; state.i++)
_cogl_disable_texture_unit (state.i);
}
/* Re-assert the layer's wrap modes on the given CoglTexture.
*
* Note: we don't simply forward the wrap modes to layer->texture
* since the actual texture being used may have been overridden.
*/
static void
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_layer_forward_wrap_modes (CoglPipelineLayer *layer,
CoglHandle texture)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineWrapModeInternal wrap_mode_s, wrap_mode_t, wrap_mode_p;
GLenum gl_wrap_mode_s, gl_wrap_mode_t, gl_wrap_mode_p;
if (texture == COGL_INVALID_HANDLE)
return;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_layer_get_wrap_modes (layer,
&wrap_mode_s,
&wrap_mode_t,
&wrap_mode_p);
/* Update the wrap mode on the texture object. The texture backend
should cache the value so that it will be a no-op if the object
already has the same wrap mode set. The backend is best placed to
do this because it knows how many of the coordinates will
actually be used (ie, a 1D texture only cares about the 's'
coordinate but a 3D texture would use all three). GL uses the
wrap mode as part of the texture object state but we are
pretending it's part of the per-layer environment state. This
will break if the application tries to use different modes in
different layers using the same texture. */
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (wrap_mode_s == COGL_PIPELINE_WRAP_MODE_INTERNAL_AUTOMATIC)
gl_wrap_mode_s = GL_CLAMP_TO_EDGE;
else
gl_wrap_mode_s = wrap_mode_s;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (wrap_mode_t == COGL_PIPELINE_WRAP_MODE_INTERNAL_AUTOMATIC)
gl_wrap_mode_t = GL_CLAMP_TO_EDGE;
else
gl_wrap_mode_t = wrap_mode_t;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (wrap_mode_p == COGL_PIPELINE_WRAP_MODE_INTERNAL_AUTOMATIC)
gl_wrap_mode_p = GL_CLAMP_TO_EDGE;
else
gl_wrap_mode_p = wrap_mode_p;
_cogl_texture_set_wrap_mode_parameters (texture,
gl_wrap_mode_s,
gl_wrap_mode_t,
gl_wrap_mode_p);
}
/* OpenGL associates the min/mag filters and repeat modes with the
* texture object not the texture unit so we always have to re-assert
* the filter and repeat modes whenever we use a texture since it may
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* be referenced by multiple pipelines with different modes.
*
* XXX: GL_ARB_sampler_objects fixes this in OpenGL so we should
* eventually look at using this extension when available.
*/
static void
foreach_texture_unit_update_filter_and_wrap_modes (void)
{
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
for (i = 0; i < ctx->texture_units->len; i++)
{
CoglTextureUnit *unit =
&g_array_index (ctx->texture_units, CoglTextureUnit, i);
if (!unit->enabled)
break;
if (unit->layer)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglHandle texture = _cogl_pipeline_layer_get_texture (unit->layer);
CoglPipelineFilter min;
CoglPipelineFilter mag;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_layer_get_filters (unit->layer, &min, &mag);
_cogl_texture_set_filters (texture, min, mag);
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_layer_forward_wrap_modes (unit->layer, texture);
}
}
}
typedef struct
{
int i;
unsigned long *layer_differences;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
} CoglPipelineCompareLayersState;
static gboolean
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
compare_layer_differences_cb (CoglPipelineLayer *layer, void *user_data)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineCompareLayersState *state = user_data;
CoglTextureUnit *unit = _cogl_get_texture_unit (state->i);
if (unit->layer == layer)
state->layer_differences[state->i] = unit->layer_changes_since_flush;
else if (unit->layer)
{
state->layer_differences[state->i] = unit->layer_changes_since_flush;
state->layer_differences[state->i] |=
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_layer_compare_differences (layer, unit->layer);
}
else
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
state->layer_differences[state->i] = COGL_PIPELINE_LAYER_STATE_ALL_SPARSE;
/* XXX: There is always a possibility that a CoglTexture's
* underlying GL texture storage has been changed since it was last
* bound to a texture unit which is why we have a callback into
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* _cogl_pipeline_texture_storage_change_notify whenever a textures
* underlying GL texture storage changes which will set the
* unit->texture_intern_changed flag. If we see that's been set here
* then we force an update of the texture state...
*/
if (unit->texture_storage_changed)
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
state->layer_differences[state->i] |= COGL_PIPELINE_LAYER_STATE_TEXTURE;
state->i++;
return TRUE;
}
typedef struct
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
const CoglPipelineBackend *backend;
CoglPipeline *pipeline;
unsigned long *layer_differences;
gboolean error_adding_layer;
gboolean added_layer;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
} CoglPipelineBackendAddLayerState;
static gboolean
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
backend_add_layer_cb (CoglPipelineLayer *layer,
void *user_data)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineBackendAddLayerState *state = user_data;
const CoglPipelineBackend *backend = state->backend;
CoglPipeline *pipeline = state->pipeline;
int unit_index = _cogl_pipeline_layer_get_unit_index (layer);
CoglTextureUnit *unit = _cogl_get_texture_unit (unit_index);
_COGL_GET_CONTEXT (ctx, FALSE);
/* NB: We don't support the random disabling of texture
* units, so as soon as we hit a disabled unit we know all
* subsequent units are also disabled */
if (!unit->enabled)
return FALSE;
if (G_UNLIKELY (unit_index >= backend->get_max_texture_units ()))
{
int j;
for (j = unit_index; j < ctx->texture_units->len; j++)
_cogl_disable_texture_unit (j);
/* TODO: although this isn't considered an error that
* warrants falling back to a different backend we
* should print a warning here. */
return FALSE;
}
/* Either generate per layer code snippets or setup the
* fixed function glTexEnv for each layer... */
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (G_LIKELY (backend->add_layer (pipeline,
layer,
state->layer_differences[unit_index])))
state->added_layer = TRUE;
else
{
state->error_adding_layer = TRUE;
return FALSE;
}
return TRUE;
}
/*
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* _cogl_pipeline_flush_gl_state:
*
* Details of override options:
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* ->fallback_mask: is a bitmask of the pipeline layers that need to be
* replaced with the default, fallback textures. The fallback textures are
* fully transparent textures so they hopefully wont contribute to the
* texture combining.
*
* The intention of fallbacks is to try and preserve
* the number of layers the user is expecting so that texture coordinates
* they gave will mostly still correspond to the textures they intended, and
* have a fighting chance of looking close to their originally intended
* result.
*
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* ->disable_mask: is a bitmask of the pipeline layers that will simply have
* texturing disabled. It's only really intended for disabling all layers
* > X; i.e. we'd expect to see a contiguous run of 0 starting from the LSB
* and at some point the remaining bits flip to 1. It might work to disable
* arbitrary layers; though I'm not sure a.t.m how OpenGL would take to
* that.
*
* The intention of the disable_mask is for emitting geometry when the user
* hasn't supplied enough texture coordinates for all the layers and it's
* not possible to auto generate default texture coordinates for those
* layers.
*
* ->layer0_override_texture: forcibly tells us to bind this GL texture name for
* layer 0 instead of plucking the gl_texture from the CoglTexture of layer
* 0.
*
* The intention of this is for any primitives that supports sliced textures.
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* The code will can iterate each of the slices and re-flush the pipeline
* forcing the GL texture of each slice in turn.
*
* ->wrap_mode_overrides: overrides the wrap modes set on each
* layer. This is used to implement the automatic wrap mode.
*
* XXX: It might also help if we could specify a texture matrix for code
* dealing with slicing that would be multiplied with the users own matrix.
*
* Normaly texture coords in the range [0, 1] refer to the extents of the
* texture, but when your GL texture represents a slice of the real texture
* (from the users POV) then a texture matrix would be a neat way of
* transforming the mapping for each slice.
*
* Currently for textured rectangles we manually calculate the texture
* coords for each slice based on the users given coords, but this solution
* isn't ideal, and can't be used with CoglVertexBuffers.
*/
void
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_flush_gl_state (CoglPipeline *pipeline,
gboolean skip_gl_color,
int n_tex_coord_attribs)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
unsigned long pipelines_difference;
int n_layers;
unsigned long *layer_differences;
int i;
CoglTextureUnit *unit1;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
COGL_STATIC_TIMER (pipeline_flush_timer,
"Mainloop", /* parent */
"Material Flush",
"The time spent flushing material state",
0 /* no application private data */);
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
COGL_TIMER_START (_cogl_uprof_context, pipeline_flush_timer);
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (ctx->current_pipeline == pipeline)
{
/* Bail out asap if we've been asked to re-flush the already current
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* pipeline and we can see the pipeline hasn't changed */
if (ctx->current_pipeline_age == pipeline->age)
goto done;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
pipelines_difference = ctx->current_pipeline_changes_since_flush;
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
else if (ctx->current_pipeline)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
pipelines_difference = ctx->current_pipeline_changes_since_flush;
pipelines_difference |=
_cogl_pipeline_compare_differences (ctx->current_pipeline,
pipeline);
}
else
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
pipelines_difference = COGL_PIPELINE_STATE_ALL_SPARSE;
/* Get a layer_differences mask for each layer to be flushed */
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
n_layers = cogl_pipeline_get_n_layers (pipeline);
if (n_layers)
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
CoglPipelineCompareLayersState state;
layer_differences = g_alloca (sizeof (unsigned long *) * n_layers);
memset (layer_differences, 0, sizeof (layer_differences));
state.i = 0;
state.layer_differences = layer_differences;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_foreach_layer_internal (pipeline,
compare_layer_differences_cb,
&state);
}
else
layer_differences = NULL;
/* First flush everything that's the same regardless of which
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* pipeline backend is being used...
*
* 1) top level state:
* glColor (or skip if a vertex attribute is being used for color)
* blend state
* alpha test state (except for GLES 2.0)
*
* 2) then foreach layer:
* determine gl_target/gl_texture
* bind texture
* enable/disable target
* flush user matrix
*
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* Note: After _cogl_pipeline_flush_common_gl_state you can expect
* all state of the layers corresponding texture unit to be
* updated.
*/
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_flush_common_gl_state (pipeline,
pipelines_difference,
layer_differences,
skip_gl_color);
/* Now flush the fragment processing state according to the current
* fragment processing backend.
*
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* Note: Some of the backends may not support the current pipeline
* configuration and in that case it will report an error and we
* will fallback to a different backend.
*
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* NB: if pipeline->backend != COGL_PIPELINE_BACKEND_UNDEFINED then
* we have previously managed to successfully flush this pipeline
* with the given backend so we will simply use that to avoid
* fallback code paths.
*/
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (pipeline->backend == COGL_PIPELINE_BACKEND_UNDEFINED)
_cogl_pipeline_set_backend (pipeline, COGL_PIPELINE_BACKEND_DEFAULT);
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
for (i = pipeline->backend;
i < G_N_ELEMENTS (_cogl_pipeline_backends);
i++, _cogl_pipeline_set_backend (pipeline, i))
{
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
const CoglPipelineBackend *backend = _cogl_pipeline_backends[i];
CoglPipelineBackendAddLayerState state;
/* E.g. For backends generating code they can setup their
* scratch buffers here... */
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (G_UNLIKELY (!backend->start (pipeline,
n_layers,
pipelines_difference,
n_tex_coord_attribs)))
continue;
state.backend = backend;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
state.pipeline = pipeline;
state.layer_differences = layer_differences;
state.error_adding_layer = FALSE;
state.added_layer = FALSE;
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
_cogl_pipeline_foreach_layer_internal (pipeline,
backend_add_layer_cb,
&state);
if (G_UNLIKELY (state.error_adding_layer))
continue;
if (!state.added_layer &&
backend->passthrough &&
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
G_UNLIKELY (!backend->passthrough (pipeline)))
continue;
/* For backends generating code they may compile and link their
* programs here, update any uniforms and tell OpenGL to use
* that program.
*/
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
if (G_UNLIKELY (!backend->end (pipeline, pipelines_difference)))
continue;
break;
}
if (G_UNLIKELY (i >= G_N_ELEMENTS (_cogl_pipeline_backends)))
g_warning ("No usable pipeline backend was found!");
/* FIXME: This reference is actually resulting in lots of
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* copy-on-write reparenting because one-shot pipelines end up
* living for longer than necessary and so any later modification of
* the parent will cause a copy-on-write.
*
* XXX: The issue should largely go away when we switch to using
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* weak pipelines for overrides.
*/
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
cogl_object_ref (pipeline);
if (ctx->current_pipeline != NULL)
cogl_object_unref (ctx->current_pipeline);
ctx->current_pipeline = pipeline;
ctx->current_pipeline_changes_since_flush = 0;
ctx->current_pipeline_skip_gl_color = skip_gl_color;
ctx->current_pipeline_age = pipeline->age;
done:
/* Handle the fact that OpenGL associates texture filter and wrap
* modes with the texture objects not the texture units... */
foreach_texture_unit_update_filter_and_wrap_modes ();
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
/* If this pipeline has more than one layer then we always need
* to make sure we rebind the texture for unit 1.
*
* NB: various components of Cogl may temporarily bind arbitrary
* textures to texture unit 1 so they can query and modify texture
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
* object parameters. cogl-pipeline.c (See
* _cogl_bind_gl_texture_transient)
*/
unit1 = _cogl_get_texture_unit (1);
if (unit1->enabled && unit1->dirty_gl_texture)
{
_cogl_set_active_texture_unit (1);
GE (glBindTexture (unit1->current_gl_target, unit1->gl_texture));
unit1->dirty_gl_texture = FALSE;
}
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
COGL_TIMER_STOP (_cogl_uprof_context, pipeline_flush_timer);
}