mutter/configure.ac

1032 lines
37 KiB
Plaintext
Raw Normal View History

Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AC_PREREQ(2.59)
dnl ================================================================
dnl XXX: If you are making a release then you need to check these
dnl sections:
2011-06-13 06:03:04 -04:00
dnl » API versions (Only the 1.x version needs to change)
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl (the pretty numbers that the users see)
dnl
dnl » Interface version details for libtool
dnl (the shared library versioning information)
dnl
dnl » Source code release status
dnl (mark the source code as being part of a "release" or from "git")
dnl ================================================================
dnl ================================================================
dnl API versions (i.e. the pretty numbers that users see)
dnl ================================================================
m4_define([cogl_major_version], [2])
m4_define([cogl_minor_version], [0])
m4_define([cogl_micro_version], [0])
m4_define([cogl_version],
[cogl_major_version.cogl_minor_version.cogl_micro_version])
dnl Since the core Cogl library has to also maintain support for the
dnl Cogl 1.x API for Clutter then we track the 1.x version separately.
2011-06-13 06:03:04 -04:00
m4_define([cogl_1_minor_version], [7])
2011-08-12 12:02:13 -04:00
m4_define([cogl_1_micro_version], [7])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
m4_define([cogl_1_version], [1.cogl_1_minor_version.cogl_1_micro_version])
dnl ================================================================
dnl Interface version details for libtool
dnl ================================================================
# Note: we don't automatically deduce the libtool version info from
# the pretty version number that users sees. This is because we want
# to update the pretty version number before making a release since it
# can affect the name of our pkg-config file and the naming or
# location of other installed files which we want to be able to verify
# as correct well before making a release.
#
# For reference on how the various numbers should be updated at
# release time these rules are adapted from the libtool info pages:
#
# 1. Update the version information only immediately before a public
# release.
#
# 2. If the library source code has changed at all since the last
# update, then increment REVISION (`C:R:A' becomes `C:r+1:A').
#
# 3. If any interfaces have been added, removed, or changed since the
# last update, increment CURRENT, and set REVISION to 0.
#
# 4. If any interfaces have been added since the last public release,
# then increment AGE.
#
# 5. If any interfaces have been removed since the last public release,
# then set AGE to 0.
2011-08-12 12:00:41 -04:00
m4_define([cogl_lt_current], 3)
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
m4_define([cogl_lt_revision], 0)
2011-08-12 12:00:41 -04:00
m4_define([cogl_lt_age], 1)
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
# We do also tell libtool the pretty version:
m4_define([cogl_lt_release], [cogl_version])
dnl ================================================================
dnl Source code release status
dnl ================================================================
# Finally we explicitly track when we are building development source
# from Git vs building source corresponding to a release. As with the
# libtool version info we don't automatically derive this from the
# pretty version number because we want to test the results of
# updating the version number in advance of a release.
2011-08-12 12:02:13 -04:00
m4_define([cogl_release_status], [git])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AC_INIT(cogl, [cogl_1_version])
AC_CONFIG_SRCDIR(cogl/cogl.h)
AC_CONFIG_AUX_DIR([build])
AC_CONFIG_MACRO_DIR([build/autotools])
AC_CONFIG_HEADERS(config.h)
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ================================================================
dnl Required versions for dependencies
dnl ================================================================
m4_define([glib_req_version], [2.26.0])
m4_define([pangocairo_req_version], [1.20])
m4_define([gi_req_version], [0.9.5])
m4_define([gdk_pixbuf_req_version], [2.0])
m4_define([uprof_req_version], [0.3])
m4_define([gtk_doc_req_version], [1.13])
m4_define([xfixes_req_version], [3])
m4_define([xcomposite_req_version], [0.4])
m4_define([cairo_req_version], [1.10])
dnl These variables get copied into the generated README
AC_SUBST([GLIB_REQ_VERSION], [glib_req_version])
AC_SUBST([GDK_PIXBUF_REQ_VERSION], [gdk_pixbuf_req_version])
AC_SUBST([CAIRO_REQ_VERSION], [cairo_req_version])
AC_SUBST([PANGOCAIRO_REQ_VERSION], [pangocairo_req_version])
AC_SUBST([XCOMPOSITE_REQ_VERSION], [xcomposite_req_version])
AC_SUBST([XFIXES_REQ_VERSION], [xfixes_req_version])
AC_SUBST([GTK_DOC_REQ_VERSION], [gtk_doc_req_version])
AC_SUBST([GI_REQ_VERSION], [gi_req_version])
AC_SUBST([UPROF_REQ_VERSION], [uprof_req_version])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
# Save this value here, since automake will set cflags later and we
# want to know if the user specified custom cflags or not.
cflags_set=${CFLAGS+set}
AM_INIT_AUTOMAKE([1.11 foreign -Wno-portability no-define no-dist-gzip
dist-bzip2 tar-ustar])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AM_SILENT_RULES([yes])
AH_BOTTOM([#include "config-custom.h"])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ================================================================
dnl Export the API versioning
dnl ================================================================
AC_SUBST([COGL_MAJOR_VERSION],[cogl_major_version])
AC_SUBST([COGL_MINOR_VERSION],[cogl_minor_version])
AC_SUBST([COGL_MICRO_VERSION],[cogl_micro_version])
AC_SUBST([COGL_VERSION],[cogl_version])
AC_SUBST([COGL_API_VERSION],[cogl_major_version.0])
AC_SUBST([COGL_API_VERSION_AM],[$COGL_MAJOR_VERSION\_0])
AC_SUBST([COGL_1_MINOR_VERSION],[cogl_1_minor_version])
AC_SUBST([COGL_1_MICRO_VERSION],[cogl_1_micro_version])
AC_SUBST([COGL_1_VERSION],[cogl_1_version])
dnl ================================================================
dnl Export the libtool versioning
dnl ================================================================
AC_SUBST([COGL_LT_CURRENT], [cogl_lt_current])
AC_SUBST([COGL_LT_REVISION], [cogl_lt_revision])
AC_SUBST([COGL_LT_AGE], [cogl_lt_age])
AC_SUBST([COGL_LT_RELEASE], [cogl_lt_release])
dnl ================================================================
dnl Export the source code release status
dnl ================================================================
AC_SUBST([COGL_RELEASE_STATUS], [cogl_release_status])
dnl ================================================================
dnl See what platform we are building for
dnl ================================================================
AC_CANONICAL_HOST
AC_MSG_CHECKING([if building for some Win32 platform])
AS_CASE([$host],
[*-*-mingw*|*-*-cygwin*],
[
COGL_EXTRA_LDFLAGS="$COGL_EXTRA_LDFLAGS -no-undefined"
platform_win32=yes
],
[platform_win32=no]
)
AC_MSG_RESULT([$platform_win32])
AM_CONDITIONAL(OS_WIN32, [test "$platform_win32" = "yes"])
AC_CHECK_HEADER([OpenGL/gl.h], [platform_quartz=yes], [platform_quartz=no])
AM_CONDITIONAL(OS_QUARTZ, [test "$platform_quartz" = "yes"])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ================================================================
dnl Handle extra configure options
dnl ================================================================
dnl ============================================================
dnl Enable debugging
dnl ============================================================
m4_define([debug_default], [m4_if(cogl_release_status, [git], [yes], [no])])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AC_ARG_ENABLE(
[debug],
[AC_HELP_STRING([--enable-debug=@<:@no/yes@:>@], [Control Cogl debugging level @<:@default=]debug_default[@:>@])],
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
[],
enable_debug=debug_default
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
)
AS_CASE(
[$enable_debug],
[yes],
[
test "$cflags_set" = set || CFLAGS="$CFLAGS -g -O0"
COGL_EXTRA_CFLAGS="$COGL_EXTRA_CFLAGS -DCOGL_GL_DEBUG -DCOGL_OBJECT_DEBUG -DCOGL_HANDLE_DEBUG -DCOGL_ENABLE_DEBUG"
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
],
[no],
[
COGL_EXTRA_CFLAGS="$COGL_EXTRA_CFLAGS -DCOGL_ENABLE_DEBUG -DG_DISABLE_CHECKS -DG_DISABLE_CAST_CHECKS"
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
],
[AC_MSG_ERROR([Unknown argument for --enable-debug])]
)
AC_SUBST(COGL_DEBUG_CFLAGS)
dnl ============================================================
dnl Enable cairo usage for debugging
dnl (debugging code can use cairo to dump the atlas)
dnl ============================================================
PKG_CHECK_EXISTS([CAIRO], [cairo >= cairo_req_version], [have_cairo=yes])
AC_ARG_ENABLE(
[cairo],
[AC_HELP_STRING([--enable-cairo=@<:@no/yes@:>@], [Control Cairo usage in Cogl debugging code @<:@default=auto@:>@])],
[],
[
AS_IF([test "x$enable_debug" = "xyes"],
[enable_cairo=$have_cairo],
[enable_cairo=no])
]
)
AS_IF([test "x$enable_cairo" = "xyes" && test "x$enable_debug" = "xyes"],
[
AS_IF([test "x$have_cairo" != "xyes"],
[AC_MSG_ERROR([Could not find Cairo])])
COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES cairo >= cairo_req_version"
AC_DEFINE([HAVE_CAIRO], [1], [Whether we have cairo or not])
])
dnl ============================================================
dnl Enable profiling
dnl ============================================================
AC_ARG_ENABLE(profile,
[AC_HELP_STRING([--enable-profile=@<:@no/yes@:>@],
[Turn on uprof profiling support. yes; All UProf profiling probe points are compiled in and may be runtime enabled. no; No profiling support will built into cogl. @<:@default=no@:>@])],
[],
[enable_profile=no])
AS_IF([test "x$enable_profile" = "xyes"],
[
AS_IF([test "x$GCC" = "xyes"],
[
COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES uprof-0.3"
COGL_EXTRA_CFLAGS="$COGL_EXTRA_CFLAGS -DCOGL_ENABLE_PROFILE"
AS_IF([test "x$enable_debug" = "xyes"], [COGL_EXTRA_CFLAGS="$COGL_EXTRA_CFLAGS -DUPROF_DEBUG"])
],
[
AC_MSG_ERROR([--enable-profile is currently only supported if using GCC])
])
])
AM_CONDITIONAL(PROFILE, test "x$enable_profile" != "xno")
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ============================================================
dnl Enable strict compiler flags
dnl ============================================================
# use strict compiler flags only when building from git; the rules for
# distcheck will take care of turning this on when making a release
m4_define([maintainer_default], [m4_if(cogl_release_status, [git], [yes], [no])])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AC_ARG_ENABLE(
[maintainer-flags],
[AC_HELP_STRING([--enable-maintainer-flags=@<:@no/yes/error@:>@], [Use strict compiler flags @<:@default=]maintainer_default[@:>@])],
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
[],
enable_maintainer_flags=maintainer_default
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
)
MAINTAINER_COMPILER_FLAGS="-Wall -Wcast-align -Wuninitialized
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
-Wno-strict-aliasing -Wempty-body -Wformat
-Wformat-security -Winit-self
-Wdeclaration-after-statement -Wvla
-Wpointer-arith"
AS_CASE(
[$enable_maintainer_flags],
[yes],
[
AS_COMPILER_FLAGS([MAINTAINER_CFLAGS], [$MAINTAINER_COMPILER_FLAGS])
],
[no],
[
],
[error],
[
MAINTAINER_COMPILER_FLAGS="$MAINTAINER_COMPILER_FLAGS -Werror"
AS_COMPILER_FLAGS([MAINTAINER_CFLAGS], [$MAINTAINER_COMPILER_FLAGS])
],
[*],
[AC_MSG_ERROR([Invalid option for --enable-maintainer-flags])]
)
# strip leading spaces
COGL_EXTRA_CFLAGS="$COGL_EXTRA_CFLAGS ${MAINTAINER_CFLAGS#* }"
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ============================================================
dnl Choose image loading backend
dnl ============================================================
AC_ARG_ENABLE(
[gdk-pixbuf],
[AC_HELP_STRING([--enable-gdk-pixbuf=@<:@no/yes@:>@], [Enable image loading via gdk-pixbuf @<:@default=yes@:>@])],
[],
enable_gdk_pixbuf=yes
)
if test "x$enable_gdk_pixbuf" = "xyes"; then
PKG_CHECK_EXISTS([gdk-pixbuf-2.0], [have_gdk_pixbuf=yes], [have_gdk_pixbuf=no])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
else
have_gdk_pixbuf=no
fi
AC_ARG_ENABLE(
[quartz-image],
[AC_HELP_STRING([--enable-quartz-image=@<:@no/yes@:>@], [Enable image loading via quartz @<:@default=no@:>@])],
[],
enable_quartz_image=no
)
AS_IF(
[test "x$have_gdk_pixbuf" = "xyes"],
[
AC_DEFINE([USE_GDKPIXBUF], 1, [Use GdkPixbuf for loading image data])
COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES gdk-pixbuf-2.0 >= gdk_pixbuf_req_version"
COGL_IMAGE_BACKEND="gdk-pixbuf"
],
[test "x$enable_quartz_image" = "xyes"],
[
EXPERIMENTAL_CONFIG=yes
EXPERIMENTAL_OPTIONS="$EXPERIMENTAL_OPTIONS Quartz Core Graphics,"
AC_DEFINE([USE_QUARTZ], 1,
[Use Core Graphics (Quartz) for loading image data])
COGL_IMAGE_BACKEND="quartz"
],
[
EXPERIMENTAL_CONFIG=yes
EXPERIMENTAL_OPTIONS="$EXPERIMENTAL_OPTIONS fallback image decoding (stb_image),"
AC_DEFINE([USE_INTERNAL], 1,
[Use internal image decoding for loading image data])
COGL_IMAGE_BACKEND="stb_image"
]
)
dnl ============================================================
dnl Should cogl-pango be built?
dnl ============================================================
AC_ARG_ENABLE(
[cogl-pango],
[AC_HELP_STRING([--enable-cogl-pango=@<:@no/yes@:>@], [Enable pango support @<:@default=yes@:>@])],
[],
enable_cogl_pango=yes
)
AM_CONDITIONAL([BUILD_COGL_PANGO], [test "x$enable_cogl_pango" = "xyes"])
AS_IF([test "x$enable_cogl_pango" = "xyes"],
[
COGL_PANGO_PKG_REQUIRES="$COGL_PANGO_PKG_REQUIRES pangocairo >= pangocairo_req_version"
]
)
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ============================================================
dnl Determine which drivers and window systems we can support
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ============================================================
dnl ========================================================
dnl Drivers first...
dnl ========================================================
EGL_CHECKED=no
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
dnl This gets set to yes if Cogl directly links to the GL library API
dnl so it doesn't need to be dlopened. This currently happens on OSX
dnl and WGL where it's not clear if window system API can be separated
dnl from the GL API.
GL_LIBRARY_DIRECTLY_LINKED=no
enabled_drivers=""
AC_ARG_ENABLE(
[gles1],
[AC_HELP_STRING([--enable-gles1=@<:@no/yes@:>@], [Enable support for OpenGL-ES 1.1 @<:@default=no@:>@])],
[],
enable_gles1=no
)
AS_IF([test "x$enable_gles1" = "xyes"],
[
AS_IF([test "x$platform_win32" = "xyes"],
[AC_MSG_ERROR([GLES 1 not available for win32])])
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
enabled_drivers="$enabled_drivers gles1"
cogl_gl_headers="GLES/gl.h GLES/glext.h"
AC_DEFINE([HAVE_COGL_GLES], 1, [Have GLES 1.1 for rendering])
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_GLES CLUTTER_COGL_HAS_GLES"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_GLES1"
PKG_CHECK_EXISTS([glesv1_cm],
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
[COGL_PKG_REQUIRES_GL="$COGL_PKG_REQUIRES_GL glesv1_cm"
COGL_GLES1_LIBNAME="libGLESv1_CM.so"
NEED_EGL=yes
],
[
# We have to check the two headers independently as GLES/glext.h
# needs to include GLES/gl.h to have the GL types defined (eg.
# GLenum).
AC_CHECK_HEADER([GLES/gl.h],
[],
[AC_MSG_ERROR([Unable to locate GLES/gl.h])])
AC_CHECK_HEADER([GLES/glext.h],
[],
[AC_MSG_ERROR([Unable to locate GLES/glext.h])],
[#include <GLES/gl.h>])
# Early implementations provided only a GLES/egl.h while Khronos's
# implementer guide now states EGL/egl.h is the One. Some
# implementations keep a GLES/egl.h wrapper around EGL/egl.h for
# backward compatibility while others provide EGL/egl.h only.
AC_CHECK_HEADERS([GLES/egl.h EGL/egl.h])
AS_IF([test "x$ac_cv_header_GLES_egl_h" = "xyes"],
[COGL_EGL_INCLUDES="#include <GLES/egl.h>"],
[test "x$ac_cv_header_EGL_egl_h" = "xyes"],
[
COGL_EGL_INCLUDES="#include <EGL/egl.h>"
],
[AC_MSG_ERROR([Unable to locate EGL header])])
AC_SUBST([COGL_EGL_INCLUDES])
AC_CHECK_HEADERS([EGL/eglext.h],
[COGL_EGL_INCLUDES="$COGL_EGL_INCLUDE
#include <EGL/eglext.h>"],
[],
[$COGL_EGL_INCLUDES])
# Check for a GLES 1.x Common Profile library with/without EGL.
#
# Note: historically GLES 1 libraries shipped with the
# EGL and GLES symbols all bundled in one library. Now
# the Khronos Implementers Guide defines two naming
# schemes: -lGLES_CM should be used for a library that
# bundles the GLES and EGL API together and -lGLESv1_CM
# would be used for a standalone GLES API.
AC_CHECK_LIB(GLES_CM, [eglInitialize],
[COGL_GLES1_LIBNAME="libGLES_CM.so"],
[
AC_CHECK_LIB(GLESv1_CM, [glFlush],
[COGL_GLES1_LIBNAME="libGLESv1_CM.so"
NEED_SEPARATE_EGL=yes
],
[AC_MSG_ERROR([Unable to locate required GLES 1.x Common Profile library])])
])
EGL_CHECKED=yes
])
])
AC_ARG_ENABLE(
[gles2],
[AC_HELP_STRING([--enable-gles2=@<:@no/yes@:>@], [Enable support for OpenGL-ES 2.0 @<:@default=no@:>@])],
[],
enable_gles2=no
)
AS_IF([test "x$enable_gles2" = "xyes"],
[
AS_IF([test "x$platform_win32" = "xyes"],
[AC_MSG_ERROR([GLES 2 not available for win32])])
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
enabled_drivers="$enabled_drivers gles2"
cogl_gl_headers="GLES2/gl2.h GLES2/gl2ext.h"
AC_DEFINE([HAVE_COGL_GLES2], 1, [Have GLES 2.0 for rendering])
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_GLES CLUTTER_COGL_HAS_GLES"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_GLES2"
PKG_CHECK_EXISTS([glesv2],
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
[COGL_PKG_REQUIRES_GL="$COGL_PKG_REQUIRES_GL glesv2"
COGL_GLES2_LIBNAME="libGLESv2.so"
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
],
[
# We have to check the two headers independently as GLES2/gl2ext.h
# needs to include GLES2/gl2.h to have the GL types defined (eg.
# GLenum).
AC_CHECK_HEADER([GLES2/gl2.h],
[],
[AC_MSG_ERROR([Unable to locate GLES2/gl2.h])])
AC_CHECK_HEADER([GLES2/gl2ext.h],
[],
[AC_MSG_ERROR([Unable to locate GLES2/gl2ext.h])],
[#include <GLES2/gl2.h>])
COGL_GLES2_LIBNAME="libGLESv2.so"
])
NEED_EGL=yes
])
AC_ARG_ENABLE(
[gl],
[AC_HELP_STRING([--enable-gl=@<:@no/yes@:>@], [Enable support for OpenGL @<:@default=yes@:>@])],
[],
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
[enable_gl=yes]
)
AS_IF([test "x$enable_gl" = "xyes"],
[
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
enabled_drivers="$enabled_drivers gl"
PKG_CHECK_EXISTS([x11], [ALLOW_GLX=yes])
cogl_gl_headers="GL/gl.h"
AS_IF([test "x$platform_quartz" = "xyes"],
[
cogl_gl_headers="OpenGL/gl.h"
COGL_EXTRA_LDFLAGS="$COGL_EXTRA_LDFLAGS -framework OpenGL"
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
dnl The GL API is being directly linked in so there is
dnl no need to dlopen it separately
GL_LIBRARY_DIRECTLY_LINKED=yes
COGL_GL_LIBNAME=""
],
[test "x$platform_win32" = "xyes"],
[
COGL_EXTRA_LDFLAGS="$COGL_EXTRA_LDFLAGS -lopengl32 -lgdi32 -lwinmm"
COGL_EXTRA_CFLAGS="$COGL_EXTRA_CFLAGS -D_WIN32_WINNT=0x0500"
ALLOW_WGL=yes
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
dnl The GL API is being directly linked in so there is
dnl no need to dlopen it separately
GL_LIBRARY_DIRECTLY_LINKED=yes
COGL_GL_LIBNAME=""
],
[
PKG_CHECK_EXISTS([gl],
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
dnl We don't want to use COGL_PKG_REQUIRES here because we don't want to
dnl directly link against libGL
[COGL_PKG_REQUIRES_GL="$COGL_PKG_REQUIRES_GL gl"],
[AC_CHECK_LIB(GL, [glGetString],
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
,
[AC_MSG_ERROR([Unable to locate required GL library])])
])
COGL_GL_LIBNAME="libGL.so.1"
])
AC_DEFINE([HAVE_COGL_GL], [1], [Have GL for rendering])
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_GL"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS CLUTTER_COGL_HAS_GL"
])
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
AM_CONDITIONAL([COGL_DRIVER_GL_SUPPORTED], [test "x$enable_gl" = "xyes"])
AM_CONDITIONAL([COGL_DRIVER_GLES_SUPPORTED],
[test "x$enable_gles1" = "xyes" || test "x$enable_gles2" = "xyes"])
dnl Allow the GL library names to be overridden with configure options
AC_ARG_WITH([gl-libname],
[AS_HELP_STRING([--with-gl-libname],
override the name of the GL library to dlopen)],
[COGL_GL_LIBNAME="$withval"])
AC_ARG_WITH([gles1-libname],
[AS_HELP_STRING([--with-gles1-libname],
override the name of the GLESv1 library to dlopen)],
[COGL_GLES1_LIBNAME="$withval"])
AC_ARG_WITH([gles2-libname],
[AS_HELP_STRING([--with-gles2-libname],
override the name of the GLESv2 library to dlopen)],
[COGL_GLES2_LIBNAME="$withval"])
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
AC_SUBST([COGL_GL_LIBNAME])
AC_SUBST([COGL_GLES1_LIBNAME])
AC_SUBST([COGL_GLES2_LIBNAME])
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
if test "x$GL_LIBRARY_DIRECTLY_LINKED" = "xyes"; then
AC_DEFINE([HAVE_DIRECTLY_LINKED_GL_LIBRARY], [1],
[Defined if the GL library shouldn't be dlopened])
fi
dnl ========================================================
dnl Check window system integration libraries...
dnl ========================================================
AC_ARG_ENABLE(
[glx],
[AC_HELP_STRING([--enable-glx=@<:@no/yes@:>@], [Enable support GLX @<:@default=auto@:>@])],
[],
[AS_IF([test "x$ALLOW_GLX" = "xyes"], [enable_glx=yes], [enable_glx=no])]
)
AS_IF([test "x$enable_glx" = "xyes"],
[
AS_IF([test "x$ALLOW_GLX" != "xyes"],
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
[AC_MSG_ERROR([GLX not supported with this configuration])])
NEED_XLIB=yes
SUPPORT_GLX=yes
GL_WINSYS_APIS="$GL_WINSYS_APIS glx"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_GLX_SUPPORT"
# We might fall back to DRM for sync-to-vblank on GLX
PKG_CHECK_EXISTS([libdrm],
[
AC_DEFINE([HAVE_DRM], [1], [Have libdrm support])
COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES libdrm"
],
[])
])
AM_CONDITIONAL(SUPPORT_GLX, [test "x$SUPPORT_GLX" = "xyes"])
AC_ARG_ENABLE(
[wgl],
[AC_HELP_STRING([--enable-wgl=@<:@no/yes@:>@], [Enable support for WGL @<:@default=auto@:>@])],
[],
[AS_IF([test "x$ALLOW_WGL" = "xyes"], [enable_wgl=yes], [enable_wgl=no])]
)
AS_IF([test "x$enable_wgl" = "xyes"],
[
AS_IF([test "x$ALLOW_WGL" != "xyes"],
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
[AC_MSG_ERROR([WGL not supported with this configuration])])
SUPPORT_WGL=yes
GL_WINSYS_APIS="$GL_WINSYS_APIS wgl"
AC_DEFINE([COGL_HAS_WGL_SUPPORT], [1], [Cogl supports OpenGL using the WGL API])
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_WIN32_SUPPORT"
])
AM_CONDITIONAL(SUPPORT_WGL, [test "x$SUPPORT_WGL" = "xyes"])
EGL_PLATFORM_COUNT=0
AC_ARG_ENABLE(
[null-egl-platform],
[AC_HELP_STRING([--enable-null-egl-platform=@<:@no/yes@:>@], [Enable support for the NULL egl platform @<:@default=no@:>@])],
[],
enable_null_egl_platform=no
)
AS_IF([test "x$enable_null_egl_platform" = "xyes"],
[
EGL_PLATFORM_COUNT=$((EGL_PLATFORM_COUNT+1))
NEED_EGL=yes
EGL_PLATFORMS="$EGL_PLATFORMS null"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_EGL_PLATFORM_POWERVR_NULL_SUPPORT"
])
AM_CONDITIONAL(SUPPORT_EGL_PLATFORM_POWERVR_NULL,
[test "x$enable_null_egl_platform" = "xyes"])
AC_ARG_ENABLE(
[gdl-egl-platform],
[AC_HELP_STRING([--enable-gdl-egl-platform=@<:@no/yes@:>@], [Enable support for the GDL egl platform @<:@default=no@:>@])],
[],
enable_gdl_egl_platform=no
)
AS_IF([test "x$enable_gdl_egl_platform" == "xyes"],
[
EGL_PLATFORM_COUNT=$((EGL_PLATFORM_COUNT+1))
NEED_EGL=yes
EGL_PLATFORMS="$EGL_PLATFORMS gdl"
AC_CHECK_HEADERS(
[libgdl.h],
[],
[
AC_CHECK_HEADERS(
[CE4100/libgdl.h],
[
COGL_EXTRA_CFLAGS="$COGL_EXTRA_CFLAGS -I/usr/include/CE4100"
],
[AC_MSG_ERROR([libgdl.h not found])])
])
COGL_EXTRA_LDFLAGS="$COGL_EXTRA_LDFLAGS -lgdl"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_EGL_PLATFORM_GDL_SUPPORT"
])
AM_CONDITIONAL(SUPPORT_EGL_PLATFORM_GDL,
[test "x$enable_gdl_egl_platform" = "xyes"])
AC_ARG_ENABLE(
[wayland-egl-platform],
[AC_HELP_STRING([--enable-wayland-egl-platform=@<:@no/yes@:>@], [Enable support for the Wayland egl platform @<:@default=no@:>@])],
[],
enable_wayland_egl_platform=no
)
AS_IF([test "x$enable_wayland_egl_platform" == "xyes"],
[
EGL_PLATFORM_COUNT=$((EGL_PLATFORM_COUNT+1))
NEED_EGL=yes
EGL_PLATFORMS="$EGL_PLATFORMS wayland"
PKG_CHECK_EXISTS([wayland-egl],
[
COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES wayland-egl"
COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES wayland-client"
],
[AC_MSG_ERROR([Unable to locate required wayland libraries])])
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_EGL_PLATFORM_WAYLAND_SUPPORT"
])
AM_CONDITIONAL(SUPPORT_EGL_PLATFORM_WAYLAND,
[test "x$enable_wayland_egl_platform" = "xyes"])
AC_ARG_ENABLE(
[wayland-egl-server],
[AC_HELP_STRING([--enable-wayland-egl-server=@<:@no/yes@:>@], [Enable server side wayland support @<:@default=no@:>@])],
[],
enable_wayland_egl_server=no
)
AS_IF([test "x$enable_wayland_egl_server" == "xyes"],
[
NEED_EGL=yes
COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES wayland-server"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_WAYLAND_EGL_SERVER_SUPPORT"
])
AM_CONDITIONAL(SUPPORT_WAYLAND_EGL_SERVER,
[test "x$enable_wayland_egl_server" = "xyes"])
dnl Android EGL platform
AC_ARG_ENABLE(
[android-egl-platform],
[AC_HELP_STRING([--enable-android-egl-platform=@<:@no/yes@:>@], [Enable support for the Android egl platform @<:@default=no@:>@])],
[],
enable_android_egl_platform=no
)
AS_IF([test "x$enable_android_egl_platform" == "xyes"],
[
EGL_PLATFORM_COUNT=$((EGL_PLATFORM_COUNT+1))
NEED_EGL=yes
EGL_PLATFORMS="$EGL_PLATFORMS android"
AC_CHECK_HEADER([android/native_window.h],
[],
[AC_MSG_ERROR([Unable to locate android/native_window.h])])
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_EGL_PLATFORM_ANDROID_SUPPORT"
])
AM_CONDITIONAL(SUPPORT_EGL_PLATFORM_ANDROID,
[test "x$enable_android_egl_platform" = "xyes"])
dnl This should go last, since it's the default fallback and we need
dnl to check the value of $EGL_PLATFORM_COUNT here.
AC_ARG_ENABLE(
[xlib-egl-platform],
[AC_HELP_STRING([--enable-xlib-egl-platform=@<:@no/yes@:>@], [Enable support for the Xlib egl platform @<:@default=auto@:>@])],
[],
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
AS_IF([test "x$enable_gles1" = "xyes" -o "x$enable_gles2" = "xyes" && test $EGL_PLATFORM_COUNT -eq 0],
[enable_xlib_egl_platform=yes], [enable_xlib_egl_platform=no])
)
AS_IF([test "x$enable_xlib_egl_platform" = "xyes"],
[
EGL_PLATFORM_COUNT=$((EGL_PLATFORM_COUNT+1))
NEED_EGL=yes
NEED_XLIB=yes
EGL_PLATFORMS="$EGL_PLATFORMS xlib"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_EGL_PLATFORM_POWERVR_X11_SUPPORT"
])
AM_CONDITIONAL(SUPPORT_EGL_PLATFORM_POWERVR_X11,
[test "x$enable_xlib_egl_platform" = "xyes"])
AS_IF([test $EGL_PLATFORM_COUNT -gt 1],
[AC_MSG_ERROR(['The --enable-*-egl-platform options are currently mutually exclusive'])])
AS_IF([test "x$NEED_EGL" = "xyes" && test "x$EGL_CHECKED" != "xyes"],
[
PKG_CHECK_EXISTS([egl],
[COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES egl"],
[
AC_CHECK_HEADERS(
[EGL/egl.h],
[],
[AC_MSG_ERROR([Unable to locate required EGL headers])])
AC_CHECK_HEADERS(
[EGL/eglext.h],
[],
[AC_MSG_ERROR([Unable to locate required EGL headers])],
[#include <EGL/egl.h>])
AC_CHECK_LIB(EGL, [eglInitialize],
[COGL_EXTRA_LDFLAGS="$COGL_EXTRA_LDFLAGS -lEGL"],
[AC_MSG_ERROR([Unable to locate required EGL library])])
COGL_EXTRA_LDFLAGS="$COGL_EXTRA_LDFLAGS -lEGL"
]
)
COGL_EGL_INCLUDES="#include <EGL/egl.h>
#include <EGL/eglext.h>"
AC_SUBST([COGL_EGL_INCLUDES])
])
AS_IF([test "x$NEED_EGL" = "xyes"],
[
SUPPORT_EGL=yes
GL_WINSYS_APIS="$GL_WINSYS_APIS egl"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_EGL_SUPPORT"
])
AM_CONDITIONAL(SUPPORT_EGL, [test "x$SUPPORT_EGL" = "xyes"])
dnl ========================================================
dnl Check X11 dependencies if required
dnl ========================================================
AS_IF([test "x$NEED_XLIB" = "xyes"],
[
X11_MODULES="x11 xext xfixes >= xfixes_req_version xdamage xcomposite >= xcomposite_req_version"
PKG_CHECK_MODULES(DUMMY, [$X11_MODULES],
[COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES $X11_MODULES"])
SUPPORT_X11=yes
SUPPORT_XLIB=yes
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_X11"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_X11_SUPPORT"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_XLIB"
COGL_DEFINES_SYMBOLS="$COGL_DEFINES_SYMBOLS COGL_HAS_XLIB_SUPPORT"
])
AM_CONDITIONAL(X11_TESTS, [test "x$SUPPORT_X11" = "xyes"])
AM_CONDITIONAL(SUPPORT_X11, [test "x$SUPPORT_X11" = "xyes"])
AM_CONDITIONAL(SUPPORT_XLIB, [test "x$SUPPORT_XLIB" = "xyes"])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ================================================================
dnl Compiler stuff.
dnl ================================================================
AC_PROG_CC
AC_PROG_CPP
AM_PROG_CC_C_O
AC_ISC_POSIX
AC_C_CONST
dnl ================================================================
dnl Libtool stuff.
dnl ================================================================
dnl AC_PROG_LIBTOOL
dnl LIBTOOL="$LIBTOOL --preserve-dup-deps"
LT_PREREQ([2.2.6])
LT_INIT([disable-static])
dnl ================================================================
dnl I18n stuff.
dnl ================================================================
AM_GNU_GETTEXT_VERSION([0.17])
AM_GNU_GETTEXT([external])
GETTEXT_PACKAGE="cogl"
AC_SUBST(GETTEXT_PACKAGE)
AC_DEFINE_UNQUOTED(GETTEXT_PACKAGE,
"$GETTEXT_PACKAGE",
[The prefix for our gettext translation domains.])
AS_ALL_LINGUAS
dnl ================================================================
dnl Documentation stuff.
dnl ================================================================
# gtkdocize greps for ^GTK_DOC_CHECK and parses it, so you need to have
# it on it's own line.
m4_ifdef([GTK_DOC_CHECK], [
GTK_DOC_CHECK([gtk_doc_req_version], [--flavour no-tmpl])
])
AM_CONDITIONAL([BUILD_GTK_DOC], [test "x$enable_gtk_doc" = "xyes"])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ================================================================
dnl Check for dependency packages.
dnl ================================================================
dnl ============================================================
dnl Check glib dependencies
dnl ============================================================
AM_PATH_GLIB_2_0([glib_req_version],
[have_glib=yes], [have_glib=no],
[gobject gthread gmodule-no-export])
AS_IF([test "x$have_glib" = "xno"], AC_MSG_ERROR([gobject-2.0 is required]))
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
COGL_PKG_REQUIRES="$COGL_PKG_REQUIRES gobject-2.0 gmodule-no-export-2.0"
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AC_SUBST(COGL_PKG_REQUIRES)
PKG_CHECK_MODULES(COGL_DEP, [$COGL_PKG_REQUIRES])
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
if test -n "$COGL_PKG_REQUIRES_GL"; then
PKG_CHECK_MODULES(COGL_DEP_GL, [$COGL_PKG_REQUIRES_GL])
dnl Strip out the GL libraries from the GL pkg-config files so we can
dnl dynamically load them instead
gl_libs=""
for x in $COGL_DEP_GL_LIBS; do
AS_CASE([$x],
[-lGL], [],
[-lGLESv2], [],
[-lGLESv1_CM], [],
[*], [gl_libs="$gl_libs $x"])
done
COGL_DEP_CFLAGS="$COGL_DEP_CFLAGS $COGL_DEP_CFLAGS_GL"
COGL_DEP_LIBS="$COGL_DEP_LIBS $gl_libs"
fi
AC_SUBST(COGL_PANGO_PKG_REQUIRES)
PKG_CHECK_MODULES(COGL_PANGO_DEP, [$COGL_PANGO_PKG_REQUIRES])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ================================================================
dnl Misc program dependencies.
dnl ================================================================
AC_PROG_INSTALL
dnl ================================================================
dnl GObject-Introspection check
dnl ================================================================
GOBJECT_INTROSPECTION_CHECK([gi_req_version])
dnl ================================================================
dnl Checks for header files.
dnl ================================================================
AC_PATH_X
AC_HEADER_STDC
AC_CHECK_HEADERS(fcntl.h limits.h unistd.h)
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ================================================================
dnl Checks for library functions.
dnl ================================================================
dnl The 'ffs' function is part of C99 so it isn't always
dnl available. Cogl has a fallback if needed.
AC_CHECK_FUNCS([ffs])
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
dnl ================================================================
dnl What needs to be substituted in other files
dnl ================================================================
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
COGL_DEFINES=""
for x in $COGL_DEFINES_SYMBOLS; do
COGL_DEFINES="$COGL_DEFINES
#define $x 1"
done;
AC_SUBST(COGL_DEFINES)
AS_IF([test "x$cogl_gl_headers" = "x"],
[AC_MSG_ERROR([Internal error: no GL header set])])
dnl cogl_gl_headers is a space separate list of headers to
dnl include. We'll now convert them to a single variable with a
dnl #include line for each header
COGL_GL_HEADER_INCLUDES=""
for x in $cogl_gl_headers; do
COGL_GL_HEADER_INCLUDES="$COGL_GL_HEADER_INCLUDES
#include <$x>"
done;
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AC_SUBST(COGL_GL_HEADER_INCLUDES)
AC_DEFINE([COGL_ENABLE_EXPERIMENTAL_2_0_API], [1],
[Can use Cogl 2.0 API internally])
AC_SUBST(COGL_DEP_CFLAGS)
AC_SUBST(COGL_DEP_LIBS)
AC_SUBST(COGL_PANGO_DEP_CFLAGS)
AC_SUBST(COGL_PANGO_DEP_LIBS)
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AC_SUBST(COGL_EXTRA_CFLAGS)
AC_SUBST(COGL_EXTRA_LDFLAGS)
# just for compatability with the clutter build...
MAINTAINER_CFLAGS=
AC_SUBST(MAINTAINER_CFLAGS)
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
AC_OUTPUT(
Makefile
2011-05-06 07:26:15 -04:00
README
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
cogl/Makefile
cogl/cogl-1.0.pc
cogl/cogl-2.0-experimental.pc
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
cogl/cogl-defines.h
cogl-pango/Makefile
cogl-pango/cogl-pango-1.0.pc
cogl-pango/cogl-pango-2.0-experimental.pc
doc/Makefile
doc/reference/Makefile
doc/reference/cogl/Makefile
doc/reference/cogl/cogl-docs.xml
doc/reference/cogl-2.0-experimental/Makefile
doc/reference/cogl-2.0-experimental/cogl-2.0-experimental-docs.xml
examples/Makefile
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
po/Makefile.in
)
dnl ================================================================
dnl Dah Da!
dnl ================================================================
echo ""
echo "Cogl - $COGL_1_VERSION/$COGL_VERSION (${COGL_RELEASE_STATUS})"
# Global flags
echo ""
echo " • Global:"
echo " Prefix: ${prefix}"
echo ""
# Features
echo " • Features:"
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
echo " Drivers: ${enabled_drivers}"
AS_IF([test "x$GL_LIBRARY_DIRECTLY_LINKED" != xyes],
[for driver in $enabled_drivers; do
driver=`echo $driver | tr "[gles]" "[GLES]"`
libname=`eval echo \\$COGL_${driver}_LIBNAME`
echo " Library name for $driver: $libname"
done])
echo " GL Window System APIs:${GL_WINSYS_APIS}"
if test "x$SUPPORT_EGL" = "xyes"; then
echo " EGL Platforms:${EGL_PLATFORMS}"
echo " Wayland compositor support: ${enable_wayland_egl_server}"
fi
echo " Image backend: ${COGL_IMAGE_BACKEND}"
echo " Cogl Pango: ${enable_cogl_pango}"
echo " Profiling: ${enable_profile}"
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
# Compiler/Debug related flags
echo ""
echo " • Compiler options:"
echo " Cogl debug: ${enable_debug}"
echo " Compiler flags: ${CFLAGS} ${COGL_EXTRA_CFLAGS}"
echo " Linker flags: ${LDFLAGS} ${COGL_EXTRA_LDFLAGS}"
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
# Miscellaneous
echo ""
echo " • Extra:"
echo " Build API reference: ${enable_gtk_doc}"
Adds the ability to build Cogl standalone This adds an autogen.sh, configure.ac and build/autotool files etc under clutter/cogl and makes some corresponding Makefile.am changes that make it possible to build and install Cogl as a standalone library. Some notable things about this are: A standalone installation of Cogl installs 3 pkg-config files; cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for compatibility with what clutter installed though I'm not sure that anything uses it so maybe we could remove it. cogl-1.0.pc is what Clutter would use if it were updated to build against a standalone cogl library. cogl-2.0.pc is what you would use if you were writing a standalone Cogl application. A standalone installation results in two libraries currently, libcogl.so and libcogl-pango.so. Notably we don't include a major number in the sonames because libcogl supports two major API versions; 1.x as used by Clutter and the experimental 2.x API for standalone applications. Parallel installation of later versions e.g. 3.x and beyond will be supportable either with new sonames or if we can maintain ABI then we'll continue to share libcogl.so. The headers are similarly not installed into a directory with a major version number since the same headers are shared to export the 1.x and 2.x APIs (The only difference is that cogl-2.0.pc ensures that -DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of later versions is not precluded though since we can either continue sharing or later add a major version suffix.
2011-02-09 21:32:11 -05:00
echo " Build introspection data: ${enable_introspection}"
echo ""
# General warning about experimental features
if test "x$EXPERIMENTAL_CONFIG" = "xyes"; then
echo ""
echo "☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠"
echo " *WARNING*"
echo ""
echo " The stability of your build might be affected by one or more"
echo " experimental configuration options."
echo
echo " experimental options: $EXPERIMENTAL_OPTIONS"
echo "☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠☠"
echo ""
fi