2008-04-25 13:37:36 +00:00
|
|
|
/*
|
2009-04-27 15:48:12 +01:00
|
|
|
* Cogl
|
2008-04-25 13:37:36 +00:00
|
|
|
*
|
2009-04-27 15:48:12 +01:00
|
|
|
* An object oriented GL/GLES Abstraction/Utility Layer
|
2008-04-25 13:37:36 +00:00
|
|
|
*
|
2009-04-27 15:48:12 +01:00
|
|
|
* Copyright (C) 2007,2008,2009 Intel Corporation.
|
2008-04-25 13:37:36 +00:00
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, write to the
|
|
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
* Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __COGL_PRIMITIVES_H
|
|
|
|
#define __COGL_PRIMITIVES_H
|
|
|
|
|
2009-01-20 16:20:54 +00:00
|
|
|
typedef struct _floatVec2 floatVec2;
|
2008-04-25 13:37:36 +00:00
|
|
|
typedef struct _CoglBezQuad CoglBezQuad;
|
|
|
|
typedef struct _CoglBezCubic CoglBezCubic;
|
2008-12-04 13:45:09 +00:00
|
|
|
typedef struct _CoglPathNode CoglPathNode;
|
2008-04-25 13:37:36 +00:00
|
|
|
|
2009-01-20 16:20:54 +00:00
|
|
|
struct _floatVec2
|
2008-04-25 13:37:36 +00:00
|
|
|
{
|
2009-01-20 16:20:54 +00:00
|
|
|
float x;
|
|
|
|
float y;
|
2008-04-25 13:37:36 +00:00
|
|
|
};
|
|
|
|
|
2008-12-04 13:45:09 +00:00
|
|
|
struct _CoglPathNode
|
|
|
|
{
|
Intial Re-layout of the Cogl source code and introduction of a Cogl Winsys
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
2009-07-28 02:02:02 +01:00
|
|
|
float x;
|
|
|
|
float y;
|
|
|
|
guint path_size;
|
2008-12-04 13:45:09 +00:00
|
|
|
};
|
|
|
|
|
2008-04-25 13:37:36 +00:00
|
|
|
struct _CoglBezQuad
|
|
|
|
{
|
2009-01-20 16:20:54 +00:00
|
|
|
floatVec2 p1;
|
|
|
|
floatVec2 p2;
|
|
|
|
floatVec2 p3;
|
2008-04-25 13:37:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct _CoglBezCubic
|
|
|
|
{
|
2009-01-20 16:20:54 +00:00
|
|
|
floatVec2 p1;
|
|
|
|
floatVec2 p2;
|
|
|
|
floatVec2 p3;
|
|
|
|
floatVec2 p4;
|
2008-04-25 13:37:36 +00:00
|
|
|
};
|
|
|
|
|
[cogl] Improving Cogl journal to minimize driver overheads + GPU state changes
Previously the journal was always flushed at the end of
_cogl_rectangles_with_multitexture_coords, (i.e. the end of any
cogl_rectangle* calls) but now we have broadened the potential for batching
geometry. In ideal circumstances we will only flush once per scene.
In summary the journal works like this:
When you use any of the cogl_rectangle* APIs then nothing is emitted to the
GPU at this point, we just log one or more quads into the journal. A
journal entry consists of the quad coordinates, an associated material
reference, and a modelview matrix. Ideally the journal only gets flushed
once at the end of a scene, but in fact there are things to consider that
may cause unwanted flushing, including:
- modifying materials mid-scene
This is because each quad in the journal has an associated material
reference (i.e. not copy), so if you try and modify a material that is
already referenced in the journal we force a flush first)
NOTE: For now this means you should avoid using cogl_set_source_color()
since that currently uses a single shared material. Later we
should change it to use a pool of materials that is recycled
when the journal is flushed.
- modifying any state that isn't currently logged, such as depth, fog and
backface culling enables.
The first thing that happens when flushing, is to upload all the vertex data
associated with the journal into a single VBO.
We then go through a process of splitting up the journal into batches that
have compatible state so they can be emitted to the GPU together. This is
currently broken up into 3 levels so we can stagger the state changes:
1) we break the journal up according to changes in the number of material layers
associated with logged quads. The number of layers in a material determines
the stride of the associated vertices, so we have to update our vertex
array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc)
2) we further split batches up according to material compatability. (e.g.
materials with different textures) We flush material state at this level.
3) Finally we split batches up according to modelview changes. At this level
we update the modelview matrix and actually emit the actual draw command.
This commit is largely about putting the initial design in-place; this will be
followed by other changes that take advantage of the extended batching.
2009-06-17 18:46:42 +01:00
|
|
|
void _cogl_journal_flush (void);
|
|
|
|
|
2008-04-25 13:37:36 +00:00
|
|
|
#endif /* __COGL_PRIMITIVES_H */
|