gnome-shell/js/ui/workspacesView.js

775 lines
28 KiB
JavaScript
Raw Normal View History

// -*- mode: js; js-indent-level: 4; indent-tabs-mode: nil -*-
const Clutter = imports.gi.Clutter;
const Gio = imports.gi.Gio;
const GObject = imports.gi.GObject;
const Lang = imports.lang;
const Mainloop = imports.mainloop;
const Meta = imports.gi.Meta;
const Shell = imports.gi.Shell;
const St = imports.gi.St;
const Signals = imports.signals;
const DND = imports.ui.dnd;
const Main = imports.ui.main;
const Overview = imports.ui.overview;
const Tweener = imports.ui.tweener;
const Workspace = imports.ui.workspace;
const WorkspaceThumbnail = imports.ui.workspaceThumbnail;
const WORKSPACE_SWITCH_TIME = 0.25;
// Note that mutter has a compile-time limit of 36
const MAX_WORKSPACES = 16;
const OVERRIDE_SCHEMA = 'org.gnome.shell.overrides';
function rectEqual(one, two) {
if (one == two)
return true;
if (!one || !two)
return false;
return (one.x == two.x &&
one.y == two.y &&
one.width == two.width &&
one.height == two.height);
}
const WorkspacesView = new Lang.Class({
Name: 'WorkspacesView',
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
_init: function(workspaces) {
this.actor = new St.Widget({ style_class: 'workspaces-view',
reactive: true });
// The actor itself isn't a drop target, so we don't want to pick on its area
this.actor.set_size(0, 0);
this.actor.connect('destroy', Lang.bind(this, this._onDestroy));
this.actor.connect('style-changed', Lang.bind(this,
function() {
let node = this.actor.get_theme_node();
this._spacing = node.get_length('spacing');
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
this._updateWorkspaceActors(false);
}));
this._fullGeometry = null;
this._actualGeometry = null;
this._spacing = 0;
this._animating = false; // tweening
this._scrolling = false; // swipe-scrolling
this._animatingScroll = false; // programatically updating the adjustment
this._zoomOut = false; // zoom to a larger area
this._inDrag = false; // dragging a window
this._settings = new Gio.Settings({ schema: OVERRIDE_SCHEMA });
this._updateExtraWorkspacesId =
this._settings.connect('changed::workspaces-only-on-primary',
Lang.bind(this, this._updateExtraWorkspaces));
let activeWorkspaceIndex = global.screen.get_active_workspace_index();
this._workspaces = workspaces;
// Add workspace actors
for (let w = 0; w < global.screen.n_workspaces; w++)
this.actor.add_actor(this._workspaces[w].actor);
this._workspaces[activeWorkspaceIndex].actor.raise_top();
this._extraWorkspaces = [];
this._updateExtraWorkspaces();
// Position/scale the desktop windows and their children after the
// workspaces have been created. This cannot be done first because
// window movement depends on the Workspaces object being accessible
// as an Overview member.
this._overviewShowingId =
Main.overview.connect('showing',
Lang.bind(this, function() {
for (let w = 0; w < this._workspaces.length; w++)
this._workspaces[w].zoomToOverview();
for (let w = 0; w < this._extraWorkspaces.length; w++)
this._extraWorkspaces[w].zoomToOverview();
}));
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
this._overviewShownId =
Main.overview.connect('shown',
Lang.bind(this, function() {
this.actor.set_clip(this._fullGeometry.x, this._fullGeometry.y,
this._fullGeometry.width, this._fullGeometry.height);
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
}));
this.scrollAdjustment = new St.Adjustment({ value: activeWorkspaceIndex,
lower: 0,
page_increment: 1,
page_size: 1,
step_increment: 0,
upper: this._workspaces.length });
this.scrollAdjustment.connect('notify::value',
Lang.bind(this, this._onScroll));
this._switchWorkspaceNotifyId =
global.window_manager.connect('switch-workspace',
Lang.bind(this, this._activeWorkspaceChanged));
this._itemDragBeginId = Main.overview.connect('item-drag-begin',
Lang.bind(this, this._dragBegin));
this._itemDragEndId = Main.overview.connect('item-drag-end',
Lang.bind(this, this._dragEnd));
this._windowDragBeginId = Main.overview.connect('window-drag-begin',
Lang.bind(this, this._dragBegin));
this._windowDragEndId = Main.overview.connect('window-drag-end',
Lang.bind(this, this._dragEnd));
},
_updateExtraWorkspaces: function() {
this._destroyExtraWorkspaces();
if (!this._settings.get_boolean('workspaces-only-on-primary'))
return;
let monitors = Main.layoutManager.monitors;
for (let i = 0; i < monitors.length; i++) {
if (i == Main.layoutManager.primaryIndex)
continue;
let ws = new Workspace.Workspace(null, i);
ws.setFullGeometry(monitors[i]);
ws.setActualGeometry(monitors[i]);
global.overlay_group.add_actor(ws.actor);
this._extraWorkspaces.push(ws);
}
},
_destroyExtraWorkspaces: function() {
for (let m = 0; m < this._extraWorkspaces.length; m++)
this._extraWorkspaces[m].destroy();
this._extraWorkspaces = [];
},
setFullGeometry: function(geom) {
if (rectEqual(this._fullGeometry, geom))
return;
this._fullGeometry = geom;
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
for (let i = 0; i < this._workspaces.length; i++)
this._workspaces[i].setFullGeometry(geom);
},
setActualGeometry: function(geom) {
if (rectEqual(this._actualGeometry, geom))
return;
this._actualGeometry = geom;
for (let i = 0; i < this._workspaces.length; i++)
this._workspaces[i].setActualGeometry(geom);
},
_lookupWorkspaceForMetaWindow: function (metaWindow) {
for (let i = 0; i < this._workspaces.length; i++) {
if (this._workspaces[i].containsMetaWindow(metaWindow))
return this._workspaces[i];
}
return null;
},
getActiveWorkspace: function() {
let active = global.screen.get_active_workspace_index();
return this._workspaces[active];
},
hide: function() {
let activeWorkspaceIndex = global.screen.get_active_workspace_index();
let activeWorkspace = this._workspaces[activeWorkspaceIndex];
activeWorkspace.actor.raise_top();
this.actor.remove_clip();
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
for (let w = 0; w < this._workspaces.length; w++)
this._workspaces[w].zoomFromOverview();
for (let w = 0; w < this._extraWorkspaces.length; w++)
this._extraWorkspaces[w].zoomFromOverview();
},
destroy: function() {
this.actor.destroy();
},
syncStacking: function(stackIndices) {
for (let i = 0; i < this._workspaces.length; i++)
this._workspaces[i].syncStacking(stackIndices);
for (let i = 0; i < this._extraWorkspaces.length; i++)
this._extraWorkspaces[i].syncStacking(stackIndices);
},
_scrollToActive: function() {
let active = global.screen.get_active_workspace_index();
this._updateWorkspaceActors(true);
this._updateScrollAdjustment(active);
},
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
// Update workspace actors parameters
// @showAnimation: iff %true, transition between states
_updateWorkspaceActors: function(showAnimation) {
let active = global.screen.get_active_workspace_index();
this._animating = showAnimation;
for (let w = 0; w < this._workspaces.length; w++) {
let workspace = this._workspaces[w];
Tweener.removeTweens(workspace.actor);
let y = (w - active) * (this._fullGeometry.height + this._spacing);
if (showAnimation) {
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
let params = { y: y,
time: WORKSPACE_SWITCH_TIME,
transition: 'easeOutQuad'
};
// we have to call _updateVisibility() once before the
// animation and once afterwards - it does not really
// matter which tween we use, so we pick the first one ...
if (w == 0) {
this._updateVisibility();
params.onComplete = Lang.bind(this,
function() {
this._animating = false;
this._updateVisibility();
});
}
Tweener.addTween(workspace.actor, params);
} else {
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
workspace.actor.set_position(0, y);
if (w == 0)
this._updateVisibility();
}
}
},
_updateVisibility: function() {
let active = global.screen.get_active_workspace_index();
for (let w = 0; w < this._workspaces.length; w++) {
let workspace = this._workspaces[w];
if (this._animating || this._scrolling) {
workspace.actor.show();
} else {
if (this._inDrag)
workspace.actor.visible = (Math.abs(w - active) <= 1);
else
workspace.actor.visible = (w == active);
}
}
},
_updateScrollAdjustment: function(index) {
if (this._scrolling)
return;
this._animatingScroll = true;
Tweener.addTween(this.scrollAdjustment, {
value: index,
time: WORKSPACE_SWITCH_TIME,
transition: 'easeOutQuad',
onComplete: Lang.bind(this,
function() {
this._animatingScroll = false;
})
});
},
updateWorkspaces: function(oldNumWorkspaces, newNumWorkspaces) {
let active = global.screen.get_active_workspace_index();
Tweener.addTween(this.scrollAdjustment,
{ upper: newNumWorkspaces,
time: WORKSPACE_SWITCH_TIME,
transition: 'easeOutQuad'
});
if (newNumWorkspaces > oldNumWorkspaces) {
for (let w = oldNumWorkspaces; w < newNumWorkspaces; w++) {
this._workspaces[w].setFullGeometry(this._fullGeometry);
if (this._actualGeometry)
this._workspaces[w].setActualGeometry(this._actualGeometry);
this.actor.add_actor(this._workspaces[w].actor);
}
this._updateWorkspaceActors(false);
}
},
_activeWorkspaceChanged: function(wm, from, to, direction) {
if (this._scrolling)
return;
this._scrollToActive();
},
_onDestroy: function() {
this._destroyExtraWorkspaces();
this.scrollAdjustment.run_dispose();
Main.overview.disconnect(this._overviewShowingId);
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
Main.overview.disconnect(this._overviewShownId);
global.window_manager.disconnect(this._switchWorkspaceNotifyId);
this._settings.disconnect(this._updateExtraWorkspacesId);
if (this._inDrag)
this._dragEnd();
if (this._itemDragBeginId > 0) {
Main.overview.disconnect(this._itemDragBeginId);
this._itemDragBeginId = 0;
}
if (this._itemDragEndId > 0) {
Main.overview.disconnect(this._itemDragEndId);
this._itemDragEndId = 0;
}
if (this._windowDragBeginId > 0) {
Main.overview.disconnect(this._windowDragBeginId);
this._windowDragBeginId = 0;
}
if (this._windowDragEndId > 0) {
Main.overview.disconnect(this._windowDragEndId);
this._windowDragEndId = 0;
}
},
_dragBegin: function() {
if (this._scrolling)
return;
this._inDrag = true;
this._firstDragMotion = true;
this._dragMonitor = {
dragMotion: Lang.bind(this, this._onDragMotion)
};
DND.addDragMonitor(this._dragMonitor);
},
_onDragMotion: function(dragEvent) {
if (Main.overview.animationInProgress)
return DND.DragMotionResult.CONTINUE;
if (this._firstDragMotion) {
this._firstDragMotion = false;
for (let i = 0; i < this._workspaces.length; i++)
this._workspaces[i].setReservedSlot(dragEvent.dragActor._delegate);
for (let i = 0; i < this._extraWorkspaces.length; i++)
this._extraWorkspaces[i].setReservedSlot(dragEvent.dragActor._delegate);
}
return DND.DragMotionResult.CONTINUE;
},
_dragEnd: function() {
DND.removeDragMonitor(this._dragMonitor);
this._inDrag = false;
for (let i = 0; i < this._workspaces.length; i++)
this._workspaces[i].setReservedSlot(null);
for (let i = 0; i < this._extraWorkspaces.length; i++)
this._extraWorkspaces[i].setReservedSlot(null);
},
startSwipeScroll: function() {
this._scrolling = true;
},
endSwipeScroll: function() {
this._scrolling = false;
// Make sure title captions etc are shown as necessary
this._scrollToActive();
this._updateVisibility();
},
// sync the workspaces' positions to the value of the scroll adjustment
// and change the active workspace if appropriate
_onScroll: function(adj) {
if (this._animatingScroll)
return;
let active = global.screen.get_active_workspace_index();
let current = Math.round(adj.value);
if (active != current) {
if (!this._workspaces[current]) {
// The current workspace was destroyed. This could happen
// when you are on the last empty workspace, and consolidate
// windows using the thumbnail bar.
// In that case, the intended behavior is to stay on the empty
// workspace, which is the last one, so pick it.
current = this._workspaces.length - 1;
}
let metaWorkspace = this._workspaces[current].metaWorkspace;
metaWorkspace.activate(global.get_current_time());
}
let last = this._workspaces.length - 1;
let firstWorkspaceY = this._workspaces[0].actor.y;
let lastWorkspaceY = this._workspaces[last].actor.y;
let workspacesHeight = lastWorkspaceY - firstWorkspaceY;
if (adj.upper == 1)
return;
let currentY = firstWorkspaceY;
Restructure the way we handle positioning zooming in Workspace We currently show the workspace in the overview in a rectangle with the same aspect ratio as the screen. Originally this was probably done since it showed the desktop, but we don't do this anymore, and the positioning of the windows in the overview is strictly a grid, so its not in any way related to monitor geometry. Additionally, in the multihead case the screen aspect ratio is very different from the overview monitor geometry, so a lot of space is lost. So, instead we just fill the entire inner rectangle of the overview with the workspace. However, the way the zoom into and out of the workspace right now is by scaling the workspace so that it covers the entire monitor. This cannot really work anymore when the workspace is a different aspect ratio. Furthermore the coordinates of the window clone actors are of two very different types in the "original window" case and the "window in a slot case". One is screen relative, the other is workspace relative. This makes it very hard to compute the cost of window motion distance in computeWindowMotion. In order to handle this we change the way workspace actor positioning and scaling work. All workspace window clone actors are stored in true screen coordingates, both the original window positions and the in-a-slot ones. Global scaling of the workspace is never done, we just reposition everything in both the initial zoom and when the controls appear from the side. There is one issue in the initial and final animations, which is that the clip region we normally have for the workspacesView will limit the animation of the clones to/from the original positions, so we disable the clip region during these animations. https://bugzilla.gnome.org/show_bug.cgi?id=643786
2011-03-02 16:04:03 +00:00
let newY = - adj.value / (adj.upper - 1) * workspacesHeight;
let dy = newY - currentY;
for (let i = 0; i < this._workspaces.length; i++) {
this._workspaces[i].actor.visible = Math.abs(i - adj.value) <= 1;
this._workspaces[i].actor.y += dy;
}
},
_getWorkspaceIndexToRemove: function() {
return global.screen.get_active_workspace_index();
}
});
Signals.addSignalMethods(WorkspacesView.prototype);
const WorkspacesDisplay = new Lang.Class({
Name: 'WorkspacesDisplay',
_init: function() {
this.actor = new St.Widget({ clip_to_allocation: true });
this.actor.connect('notify::allocation', Lang.bind(this, this._updateWorkspacesActualGeometry));
this.actor.connect('parent-set', Lang.bind(this, this._parentSet));
let clickAction = new Clutter.ClickAction()
clickAction.connect('clicked', Lang.bind(this, function(action) {
// Only switch to the workspace when there's no application
// windows open. The problem is that it's too easy to miss
// an app window and get the wrong one focused.
if (action.get_button() == 1 &&
this._getPrimaryView().getActiveWorkspace().isEmpty())
Main.overview.hide();
}));
Main.overview.addAction(clickAction);
this.actor.bind_property('mapped', clickAction, 'enabled', GObject.BindingFlags.SYNC_CREATE);
let panAction = new Clutter.PanAction();
panAction.connect('pan', Lang.bind(this, this._onPan));
panAction.connect('gesture-begin', Lang.bind(this, function() {
for (let i = 0; i < this._workspacesViews.length; i++)
this._workspacesViews[i].startSwipeScroll();
return true;
}));
panAction.connect('gesture-cancel', Lang.bind(this, function() {
clickAction.release();
for (let i = 0; i < this._workspacesViews.length; i++)
this._workspacesViews[i].endSwipeScroll();
}));
panAction.connect('gesture-end', Lang.bind(this, function() {
clickAction.release();
for (let i = 0; i < this._workspacesViews.length; i++)
this._workspacesViews[i].endSwipeScroll();
}));
Main.overview.addAction(panAction);
this.actor.bind_property('mapped', panAction, 'enabled', GObject.BindingFlags.SYNC_CREATE);
this._primaryIndex = Main.layoutManager.primaryIndex;
this._workspacesViews = [];
this._workspaces = [];
this._primaryScrollAdjustment = null;
this._settings = new Gio.Settings({ schema: OVERRIDE_SCHEMA });
this._settings.connect('changed::workspaces-only-on-primary',
Lang.bind(this,
this._workspacesOnlyOnPrimaryChanged));
this._workspacesOnlyOnPrimaryChanged();
global.screen.connect('notify::n-workspaces',
Lang.bind(this, this._workspacesChanged));
this._switchWorkspaceNotifyId = 0;
this._notifyOpacityId = 0;
this._scrollEventId = 0;
this._fullGeometry = null;
},
_onPan: function(action) {
let [dist, dx, dy] = action.get_motion_delta(0);
let adjustment = this._scrollAdjustment;
adjustment.value -= (dy / this.actor.height) * adjustment.page_size;
return false;
},
show: function() {
this._updateWorkspacesViews();
this._restackedNotifyId =
Main.overview.connect('windows-restacked',
Lang.bind(this, this._onRestacked));
if (this._scrollEventId == 0)
this._scrollEventId = Main.overview.connect('scroll-event', Lang.bind(this, this._onScrollEvent));
},
zoomFromOverview: function() {
for (let i = 0; i < this._workspacesViews.length; i++) {
this._workspacesViews[i].hide();
}
},
hide: function() {
if (this._restackedNotifyId > 0){
Main.overview.disconnect(this._restackedNotifyId);
this._restackedNotifyId = 0;
}
if (this._scrollEventId > 0) {
Main.overview.disconnect(this._scrollEventId);
this._scrollEventId = 0;
}
for (let i = 0; i < this._workspacesViews.length; i++)
this._workspacesViews[i].destroy();
this._workspacesViews = [];
for (let i = 0; i < this._workspaces.length; i++)
for (let w = 0; w < this._workspaces[i].length; w++) {
this._workspaces[i][w].disconnectAll();
this._workspaces[i][w].destroy();
}
},
_workspacesOnlyOnPrimaryChanged: function() {
this._workspacesOnlyOnPrimary = this._settings.get_boolean('workspaces-only-on-primary');
if (!Main.overview.visible)
return;
this._updateWorkspacesViews();
},
_updateWorkspacesViews: function() {
for (let i = 0; i < this._workspacesViews.length; i++)
this._workspacesViews[i].destroy();
for (let i = 0; i < this._workspaces.length; i++)
for (let w = 0; w < this._workspaces[i].length; w++)
this._workspaces[i][w].destroy();
this._workspacesViews = [];
this._workspaces = [];
let monitors = Main.layoutManager.monitors;
for (let i = 0; i < monitors.length; i++) {
if (this._workspacesOnlyOnPrimary && i != this._primaryIndex)
continue; // we are only interested in the primary monitor
let monitorWorkspaces = [];
for (let w = 0; w < global.screen.n_workspaces; w++) {
let metaWorkspace = global.screen.get_workspace_by_index(w);
monitorWorkspaces.push(new Workspace.Workspace(metaWorkspace, i));
}
this._workspaces.push(monitorWorkspaces);
let view = new WorkspacesView(monitorWorkspaces);
view.actor.connect('scroll-event', Lang.bind(this, this._onScrollEvent));
if (this._workspacesOnlyOnPrimary || i == this._primaryIndex) {
this._scrollAdjustment = view.scrollAdjustment;
this._scrollAdjustment.connect('notify::value',
Lang.bind(this, this._scrollValueChanged));
}
this._workspacesViews.push(view);
}
this._updateWorkspacesFullGeometry();
this._updateWorkspacesActualGeometry();
for (let i = 0; i < this._workspacesViews.length; i++)
global.overlay_group.add_actor(this._workspacesViews[i].actor);
},
_scrollValueChanged: function() {
if (this._workspacesOnlyOnPrimary)
return;
for (let i = 0; i < this._workspacesViews.length; i++) {
if (i == this._primaryIndex)
continue;
let adjustment = this._workspacesViews[i].scrollAdjustment;
// the adjustments work in terms of workspaces, so the
// values map directly
adjustment.value = this._scrollAdjustment.value;
}
},
_getPrimaryView: function() {
if (!this._workspacesViews.length)
return null;
if (this._workspacesOnlyOnPrimary)
return this._workspacesViews[0];
else
return this._workspacesViews[this._primaryIndex];
},
activeWorkspaceHasMaximizedWindows: function() {
return this._getPrimaryView().getActiveWorkspace().hasMaximizedWindows();
},
_parentSet: function(actor, oldParent) {
if (oldParent && this._notifyOpacityId)
oldParent.disconnect(this._notifyOpacityId);
this._notifyOpacityId = 0;
Meta.later_add(Meta.LaterType.BEFORE_REDRAW, Lang.bind(this,
function() {
let newParent = this.actor.get_parent();
if (!newParent)
return;
// This is kinda hackish - we want the primary view to
// appear as parent of this.actor, though in reality it
// is added directly to overlay_group
this._notifyOpacityId = newParent.connect('notify::opacity',
Lang.bind(this, function() {
let opacity = this.actor.get_parent().opacity;
let primaryView = this._getPrimaryView();
if (!primaryView)
return;
primaryView.actor.opacity = opacity;
primaryView.actor.visible = opacity != 0;
}));
}));
},
// This geometry should always be the fullest geometry
// the workspaces switcher can ever be allocated, as if
// the sliding controls were never slid in at all.
setWorkspacesFullGeometry: function(geom) {
this._fullGeometry = geom;
this._updateWorkspacesFullGeometry();
},
_updateWorkspacesFullGeometry: function() {
if (!this._workspacesViews.length)
return;
let monitors = Main.layoutManager.monitors;
let m = 0;
for (let i = 0; i < monitors.length; i++) {
if (i == this._primaryIndex) {
this._workspacesViews[m].setFullGeometry(this._fullGeometry);
m++;
} else if (!this._workspacesOnlyOnPrimary) {
this._workspacesViews[m].setFullGeometry(monitors[i]);
m++;
}
}
},
_updateWorkspacesActualGeometry: function() {
if (!this._workspacesViews.length)
return;
let [x, y] = this.actor.get_transformed_position();
let width = this.actor.allocation.x2 - this.actor.allocation.x1;
let height = this.actor.allocation.y2 - this.actor.allocation.y1;
let geometry = { x: x, y: y, width: width, height: height };
let monitors = Main.layoutManager.monitors;
let m = 0;
for (let i = 0; i < monitors.length; i++) {
if (i == this._primaryIndex) {
this._workspacesViews[m].setActualGeometry(geometry);
m++;
} else if (!this._workspacesOnlyOnPrimary) {
this._workspacesViews[m].setActualGeometry(monitors[i]);
m++;
}
}
},
_onRestacked: function(overview, stackIndices) {
for (let i = 0; i < this._workspacesViews.length; i++)
this._workspacesViews[i].syncStacking(stackIndices);
},
_workspacesChanged: function() {
if (!this._workspacesViews.length)
return;
let oldNumWorkspaces = this._workspaces[0].length;
let newNumWorkspaces = global.screen.n_workspaces;
let active = global.screen.get_active_workspace_index();
let lostWorkspaces = [];
if (newNumWorkspaces > oldNumWorkspaces) {
let monitors = Main.layoutManager.monitors;
let m = 0;
for (let i = 0; i < monitors.length; i++) {
if (this._workspacesOnlyOnPrimary &&
i != this._primaryIndex)
continue;
// Assume workspaces are only added at the end
for (let w = oldNumWorkspaces; w < newNumWorkspaces; w++) {
let metaWorkspace = global.screen.get_workspace_by_index(w);
this._workspaces[m][w] =
new Workspace.Workspace(metaWorkspace, i);
}
m++;
}
} else {
// Assume workspaces are only removed sequentially
// (e.g. 2,3,4 - not 2,4,7)
let removedIndex;
let removedNum = oldNumWorkspaces - newNumWorkspaces;
for (let w = 0; w < oldNumWorkspaces; w++) {
let metaWorkspace = global.screen.get_workspace_by_index(w);
if (this._workspaces[0][w].metaWorkspace != metaWorkspace) {
removedIndex = w;
break;
}
}
for (let i = 0; i < this._workspaces.length; i++) {
lostWorkspaces = this._workspaces[i].splice(removedIndex,
removedNum);
for (let l = 0; l < lostWorkspaces.length; l++) {
lostWorkspaces[l].disconnectAll();
lostWorkspaces[l].destroy();
}
}
}
for (let i = 0; i < this._workspacesViews.length; i++)
this._workspacesViews[i].updateWorkspaces(oldNumWorkspaces,
newNumWorkspaces);
},
_onScrollEvent: function(actor, event) {
if (!this.actor.mapped)
return false;
switch (event.get_scroll_direction()) {
case Clutter.ScrollDirection.UP:
Main.wm.actionMoveWorkspace(Meta.MotionDirection.UP);
return true;
case Clutter.ScrollDirection.DOWN:
Main.wm.actionMoveWorkspace(Meta.MotionDirection.DOWN);
return true;
}
return false;
}
});
Signals.addSignalMethods(WorkspacesDisplay.prototype);