mutter/examples/cogl-gles2-gears.c
Robert Bragg df21e20f65 Adds CoglError api
Although we use GLib internally in Cogl we would rather not leak GLib
api through Cogl's own api, except through explicitly namespaced
cogl_glib_ / cogl_gtype_ feature apis.

One of the benefits we see to not leaking GLib through Cogl's public API
is that documentation for Cogl won't need to first introduce the Glib
API to newcomers, thus hopefully lowering the barrier to learning Cogl.

This patch provides a Cogl specific typedef for reporting runtime errors
which by no coincidence matches the typedef for GError exactly.  If Cogl
is built with --enable-glib (default) then developers can even safely
assume that a CoglError is a GError under the hood.

This patch also enforces a consistent policy for when NULL is passed as
an error argument and an error is thrown. In this case we log the error
and abort the application, instead of silently ignoring it. In common
cases where nothing has been implemented to handle a particular error
and/or where applications are just printing the error and aborting
themselves then this saves some typing. This also seems more consistent
with language based exceptions which usually cause a program to abort if
they are not explicitly caught (which passing a non-NULL error signifies
in this case)

Since this policy for NULL error pointers is stricter than the standard
GError convention, there is a clear note in the documentation to warn
developers that are used to using the GError api.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46)

Note: Since we can't change the Cogl 1.x api the patch was changed to
not rename _error_quark() functions to be _error_domain() functions and
although it's a bit ugly, instead of providing our own CoglError type
that's compatible with GError we simply #define CoglError to GError
unless Cogl is built with glib disabled.

Note: this patch does technically introduce an API break since it drops
the cogl_error_get_type() symbol generated by glib-mkenum (Since the
CoglError enum was replaced by a CoglSystemError enum) but for now we
are assuming that this will not affect anyone currently using the Cogl
API. If this does turn out to be a problem in practice then we would be
able to fix this my manually copying an implementation of
cogl_error_get_type() generated by glib-mkenum into a compatibility
source file and we could also define the original COGL_ERROR_ enums for
compatibility too.

Note: another minor concern with cherry-picking this patch to the 1.14
branch is that an api scanner would be lead to believe that some APIs
have changed, and for example the gobject-introspection parser which
understands the semantics of GError will not understand the semantics of
CoglError. We expect most people that have tried to use
gobject-introspection with Cogl already understand though that it is not
well suited to generating bindings of the Cogl api anyway and we aren't
aware or anyone depending on such bindings for apis involving GErrors.
(GnomeShell only makes very-very minimal use of Cogl via the gjs
bindings for the cogl_rectangle and cogl_color apis.)

The main reason we have cherry-picked this patch to the 1.14 branch
even given the above concerns is that without it it would become very
awkward for us to cherry-pick other beneficial patches from master.
2013-01-22 17:47:39 +00:00

815 lines
23 KiB
C

/*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Ported to GLES2.
* Kristian Høgsberg <krh@bitplanet.net>
* May 3, 2010
*
* Improve GLES2 port:
* * Refactor gear drawing.
* * Use correct normals for surfaces.
* * Improve shader.
* * Use perspective projection transformation.
* * Add FPS count.
* * Add comments.
* Alexandros Frantzis <alexandros.frantzis@linaro.org>
* Jul 13, 2010
*/
#define GL_GLEXT_PROTOTYPES
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <GLES2/gl2.h>
#include <cogl/cogl.h>
#include <cogl/cogl-gles2.h>
#include <glib.h>
#define STRIPS_PER_TOOTH 7
#define VERTICES_PER_TOOTH 34
#define GEAR_VERTEX_STRIDE 6
typedef struct _Data
{
CoglContext *ctx;
CoglFramebuffer *fb;
CoglGLES2Context *gles2_ctx;
GTimer *timer;
int frames;
double last_elapsed;
} Data;
/**
* Struct describing the vertices in triangle strip
*/
struct vertex_strip {
/** The first vertex in the strip */
GLint first;
/** The number of consecutive vertices in the strip after the first */
GLint count;
};
/* Each vertex consist of GEAR_VERTEX_STRIDE GLfloat attributes */
typedef GLfloat GearVertex[GEAR_VERTEX_STRIDE];
/**
* Struct representing a gear.
*/
struct gear {
/** The array of vertices comprising the gear */
GearVertex *vertices;
/** The number of vertices comprising the gear */
int nvertices;
/** The array of triangle strips comprising the gear */
struct vertex_strip *strips;
/** The number of triangle strips comprising the gear */
int nstrips;
/** The Vertex Buffer Object holding the vertices in the graphics card */
GLuint vbo;
};
/** The view rotation [x, y, z] */
static GLfloat view_rot[3] = { 20.0, 30.0, 0.0 };
/** The gears */
static struct gear *gear1, *gear2, *gear3;
/** The current gear rotation angle */
static GLfloat angle = 0.0;
/** The location of the shader uniforms */
static GLuint ModelViewProjectionMatrix_location,
NormalMatrix_location,
LightSourcePosition_location,
MaterialColor_location;
/** The projection matrix */
static GLfloat ProjectionMatrix[16];
/** The direction of the directional light for the scene */
static const GLfloat LightSourcePosition[4] = { 5.0, 5.0, 10.0, 1.0};
/**
* Fills a gear vertex.
*
* @param v the vertex to fill
* @param x the x coordinate
* @param y the y coordinate
* @param z the z coortinate
* @param n pointer to the normal table
*
* @return the operation error code
*/
static GearVertex *
vert (GearVertex *v, GLfloat x, GLfloat y, GLfloat z, GLfloat n[3])
{
v[0][0] = x;
v[0][1] = y;
v[0][2] = z;
v[0][3] = n[0];
v[0][4] = n[1];
v[0][5] = n[2];
return v + 1;
}
/**
* Create a gear wheel.
*
* @param inner_radius radius of hole at center
* @param outer_radius radius at center of teeth
* @param width width of gear
* @param teeth number of teeth
* @param tooth_depth depth of tooth
*
* @return pointer to the constructed struct gear
*/
static struct gear *
create_gear (GLfloat inner_radius, GLfloat outer_radius, GLfloat width,
GLint teeth, GLfloat tooth_depth)
{
GLfloat r0, r1, r2;
GLfloat da;
GearVertex *v;
struct gear *gear;
double s[5], c[5];
GLfloat normal[3];
int cur_strip = 0;
int i;
/* Allocate memory for the gear */
gear = malloc (sizeof *gear);
if (gear == NULL)
return NULL;
/* Calculate the radii used in the gear */
r0 = inner_radius;
r1 = outer_radius - tooth_depth / 2.0;
r2 = outer_radius + tooth_depth / 2.0;
da = 2.0 * M_PI / teeth / 4.0;
/* Allocate memory for the triangle strip information */
gear->nstrips = STRIPS_PER_TOOTH * teeth;
gear->strips = calloc (gear->nstrips, sizeof (*gear->strips));
/* Allocate memory for the vertices */
gear->vertices = calloc (VERTICES_PER_TOOTH * teeth, sizeof(*gear->vertices));
v = gear->vertices;
for (i = 0; i < teeth; i++) {
/* Calculate needed sin/cos for varius angles */
sincos (i * 2.0 * M_PI / teeth, &s[0], &c[0]);
sincos (i * 2.0 * M_PI / teeth + da, &s[1], &c[1]);
sincos (i * 2.0 * M_PI / teeth + da * 2, &s[2], &c[2]);
sincos (i * 2.0 * M_PI / teeth + da * 3, &s[3], &c[3]);
sincos (i * 2.0 * M_PI / teeth + da * 4, &s[4], &c[4]);
/* A set of macros for making the creation of the gears easier */
#define GEAR_POINT(r, da) { (r) * c[(da)], (r) * s[(da)] }
#define SET_NORMAL(x, y, z) do { \
normal[0] = (x); normal[1] = (y); normal[2] = (z); \
} while(0)
#define GEAR_VERT(v, point, sign) vert((v), p[(point)].x, p[(point)].y, (sign) * width * 0.5, normal)
#define START_STRIP do { \
gear->strips[cur_strip].first = v - gear->vertices; \
} while(0);
#define END_STRIP do { \
int _tmp = (v - gear->vertices); \
gear->strips[cur_strip].count = _tmp - gear->strips[cur_strip].first; \
cur_strip++; \
} while (0)
#define QUAD_WITH_NORMAL(p1, p2) do { \
SET_NORMAL((p[(p1)].y - p[(p2)].y), -(p[(p1)].x - p[(p2)].x), 0); \
v = GEAR_VERT(v, (p1), -1); \
v = GEAR_VERT(v, (p1), 1); \
v = GEAR_VERT(v, (p2), -1); \
v = GEAR_VERT(v, (p2), 1); \
} while(0)
{
struct point {
GLfloat x;
GLfloat y;
};
/* Create the 7 points (only x,y coords) used to draw a tooth */
struct point p[7] = {
GEAR_POINT (r2, 1), // 0
GEAR_POINT (r2, 2), // 1
GEAR_POINT (r1, 0), // 2
GEAR_POINT (r1, 3), // 3
GEAR_POINT (r0, 0), // 4
GEAR_POINT (r1, 4), // 5
GEAR_POINT (r0, 4), // 6
};
/* Front face */
START_STRIP;
SET_NORMAL (0, 0, 1.0);
v = GEAR_VERT (v, 0, +1);
v = GEAR_VERT (v, 1, +1);
v = GEAR_VERT (v, 2, +1);
v = GEAR_VERT (v, 3, +1);
v = GEAR_VERT (v, 4, +1);
v = GEAR_VERT (v, 5, +1);
v = GEAR_VERT (v, 6, +1);
END_STRIP;
/* Inner face */
START_STRIP;
QUAD_WITH_NORMAL (4, 6);
END_STRIP;
/* Back face */
START_STRIP;
SET_NORMAL (0, 0, -1.0);
v = GEAR_VERT (v, 6, -1);
v = GEAR_VERT (v, 5, -1);
v = GEAR_VERT (v, 4, -1);
v = GEAR_VERT (v, 3, -1);
v = GEAR_VERT (v, 2, -1);
v = GEAR_VERT (v, 1, -1);
v = GEAR_VERT (v, 0, -1);
END_STRIP;
/* Outer face */
START_STRIP;
QUAD_WITH_NORMAL (0, 2);
END_STRIP;
START_STRIP;
QUAD_WITH_NORMAL (1, 0);
END_STRIP;
START_STRIP;
QUAD_WITH_NORMAL (3, 1);
END_STRIP;
START_STRIP;
QUAD_WITH_NORMAL (5, 3);
END_STRIP;
}
}
gear->nvertices = (v - gear->vertices);
/* Store the vertices in a vertex buffer object (VBO) */
glGenBuffers (1, &gear->vbo);
glBindBuffer (GL_ARRAY_BUFFER, gear->vbo);
glBufferData (GL_ARRAY_BUFFER, gear->nvertices * sizeof(GearVertex),
gear->vertices, GL_STATIC_DRAW);
return gear;
}
/**
* Multiplies two 4x4 matrices.
*
* The result is stored in matrix m.
*
* @param m the first matrix to multiply
* @param n the second matrix to multiply
*/
static void
multiply (GLfloat *m, const GLfloat *n)
{
GLfloat tmp[16];
const GLfloat *row, *column;
div_t d;
int i, j;
for (i = 0; i < 16; i++) {
tmp[i] = 0;
d = div(i, 4);
row = n + d.quot * 4;
column = m + d.rem;
for (j = 0; j < 4; j++)
tmp[i] += row[j] * column[j * 4];
}
memcpy (m, &tmp, sizeof tmp);
}
/**
* Rotates a 4x4 matrix.
*
* @param[in,out] m the matrix to rotate
* @param angle the angle to rotate
* @param x the x component of the direction to rotate to
* @param y the y component of the direction to rotate to
* @param z the z component of the direction to rotate to
*/
static void
rotate (GLfloat *m, GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
double s, c;
sincos (angle, &s, &c);
{
GLfloat r[16] = {
x * x * (1 - c) + c, y * x * (1 - c) + z * s, x * z * (1 - c) - y * s, 0,
x * y * (1 - c) - z * s, y * y * (1 - c) + c, y * z * (1 - c) + x * s, 0,
x * z * (1 - c) + y * s, y * z * (1 - c) - x * s, z * z * (1 - c) + c, 0,
0, 0, 0, 1
};
multiply (m, r);
}
}
/**
* Translates a 4x4 matrix.
*
* @param[in,out] m the matrix to translate
* @param x the x component of the direction to translate to
* @param y the y component of the direction to translate to
* @param z the z component of the direction to translate to
*/
static void
translate(GLfloat *m, GLfloat x, GLfloat y, GLfloat z)
{
GLfloat t[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 };
multiply (m, t);
}
/**
* Creates an identity 4x4 matrix.
*
* @param m the matrix make an identity matrix
*/
static void
identity (GLfloat *m)
{
GLfloat t[16] = {
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0,
};
memcpy (m, t, sizeof(t));
}
/**
* Transposes a 4x4 matrix.
*
* @param m the matrix to transpose
*/
static void
transpose (GLfloat *m)
{
GLfloat t[16] = {
m[0], m[4], m[8], m[12],
m[1], m[5], m[9], m[13],
m[2], m[6], m[10], m[14],
m[3], m[7], m[11], m[15]};
memcpy (m, t, sizeof(t));
}
/**
* Inverts a 4x4 matrix.
*
* This function can currently handle only pure translation-rotation matrices.
* Read http://www.gamedev.net/community/forums/topic.asp?topic_id=425118
* for an explanation.
*/
static void
invert (GLfloat *m)
{
GLfloat t[16];
identity (t);
// Extract and invert the translation part 't'. The inverse of a
// translation matrix can be calculated by negating the translation
// coordinates.
t[12] = -m[12]; t[13] = -m[13]; t[14] = -m[14];
// Invert the rotation part 'r'. The inverse of a rotation matrix is
// equal to its transpose.
m[12] = m[13] = m[14] = 0;
transpose (m);
// inv (m) = inv (r) * inv (t)
multiply (m, t);
}
/**
* Calculate a perspective projection transformation.
*
* @param m the matrix to save the transformation in
* @param fovy the field of view in the y direction
* @param aspect the view aspect ratio
* @param zNear the near clipping plane
* @param zFar the far clipping plane
*/
static void
perspective (GLfloat *m, GLfloat fovy, GLfloat aspect, GLfloat zNear, GLfloat zFar)
{
GLfloat tmp[16];
double sine, cosine, cotangent, deltaZ;
GLfloat radians = fovy / 2 * M_PI / 180;
identity (tmp);
deltaZ = zFar - zNear;
sincos (radians, &sine, &cosine);
if ((deltaZ == 0) || (sine == 0) || (aspect == 0))
return;
cotangent = cosine / sine;
tmp[0] = cotangent / aspect;
tmp[5] = cotangent;
tmp[10] = -(zFar + zNear) / deltaZ;
tmp[11] = -1;
tmp[14] = -2 * zNear * zFar / deltaZ;
tmp[15] = 0;
memcpy (m, tmp, sizeof(tmp));
}
/**
* Draws a gear.
*
* @param gear the gear to draw
* @param transform the current transformation matrix
* @param x the x position to draw the gear at
* @param y the y position to draw the gear at
* @param angle the rotation angle of the gear
* @param color the color of the gear
*/
static void
draw_gear (struct gear *gear, GLfloat *transform,
GLfloat x, GLfloat y, GLfloat angle, const GLfloat color[4])
{
GLfloat model_view[16];
GLfloat normal_matrix[16];
GLfloat model_view_projection[16];
int n;
/* Translate and rotate the gear */
memcpy(model_view, transform, sizeof (model_view));
translate(model_view, x, y, 0);
rotate(model_view, 2 * M_PI * angle / 360.0, 0, 0, 1);
/* Create and set the ModelViewProjectionMatrix */
memcpy (model_view_projection,
ProjectionMatrix,
sizeof(model_view_projection));
multiply (model_view_projection, model_view);
glUniformMatrix4fv (ModelViewProjectionMatrix_location, 1, GL_FALSE,
model_view_projection);
/*
* Create and set the NormalMatrix. It's the inverse transpose of the
* ModelView matrix.
*/
memcpy (normal_matrix, model_view, sizeof (normal_matrix));
invert (normal_matrix);
transpose (normal_matrix);
glUniformMatrix4fv (NormalMatrix_location, 1, GL_FALSE, normal_matrix);
/* Set the gear color */
glUniform4fv (MaterialColor_location, 1, color);
/* Set the vertex buffer object to use */
glBindBuffer (GL_ARRAY_BUFFER, gear->vbo);
/* Set up the position of the attributes in the vertex buffer object */
glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE,
6 * sizeof(GLfloat), NULL);
glVertexAttribPointer (1, 3, GL_FLOAT, GL_FALSE,
6 * sizeof(GLfloat), (GLfloat *) 0 + 3);
/* Enable the attributes */
glEnableVertexAttribArray (0);
glEnableVertexAttribArray (1);
/* Draw the triangle strips that comprise the gear */
for (n = 0; n < gear->nstrips; n++)
glDrawArrays (GL_TRIANGLE_STRIP,
gear->strips[n].first,
gear->strips[n].count);
/* Disable the attributes */
glDisableVertexAttribArray (1);
glDisableVertexAttribArray (0);
}
/**
* Draws the gears.
*/
static void
gears_draw(void)
{
const static GLfloat red[4] = { 0.8, 0.1, 0.0, 1.0 };
const static GLfloat green[4] = { 0.0, 0.8, 0.2, 1.0 };
const static GLfloat blue[4] = { 0.2, 0.2, 1.0, 1.0 };
GLfloat transform[16];
identity(transform);
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
/* Translate and rotate the view */
translate (transform, 0, 0, -20);
rotate (transform, 2 * M_PI * view_rot[0] / 360.0, 1, 0, 0);
rotate (transform, 2 * M_PI * view_rot[1] / 360.0, 0, 1, 0);
rotate (transform, 2 * M_PI * view_rot[2] / 360.0, 0, 0, 1);
/* Draw the gears */
draw_gear (gear1, transform, -3.0, -2.0, angle, red);
draw_gear (gear2, transform, 3.1, -2.0, -2 * angle - 9.0, green);
draw_gear (gear3, transform, -3.1, 4.2, -2 * angle - 25.0, blue);
}
static gboolean
paint_cb (void *user_data)
{
Data *data = user_data;
double elapsed = g_timer_elapsed (data->timer, NULL);
double dt = elapsed - data->last_elapsed;
CoglError *error = NULL;
/* Draw scene with GLES2 */
if (!cogl_push_gles2_context (data->ctx,
data->gles2_ctx,
data->fb,
data->fb,
&error))
{
g_error ("Failed to push gles2 context: %s\n", error->message);
}
gears_draw ();
cogl_pop_gles2_context (data->ctx);
cogl_onscreen_swap_buffers (COGL_ONSCREEN (data->fb));
/* advance rotation for next frame */
angle += 70.0 * dt; /* 70 degrees per second */
if (angle > 3600.0)
angle -= 3600.0;
data->frames++;
if (elapsed > 5.0) {
GLfloat fps = data->frames / elapsed;
printf ("%d frames in %3.1f seconds = %6.3f FPS\n",
data->frames, elapsed, fps);
g_timer_reset (data->timer);
data->last_elapsed = 0;
data->frames = 0;
}else
data->last_elapsed = elapsed;
/* If the driver can deliver swap complete events then we can remove
* the idle paint callback until we next get a swap complete event
* otherwise we keep the idle paint callback installed and simply
* paint as fast as the driver will allow... */
if (cogl_has_feature (data->ctx, COGL_FEATURE_ID_SWAP_BUFFERS_EVENT))
return FALSE; /* remove the callback */
else
return TRUE;
}
static void
swap_complete_cb (CoglFramebuffer *framebuffer, void *user_data)
{
g_idle_add (paint_cb, user_data);
}
/**
* Handles a new window size or exposure.
*
* @param width the window width
* @param height the window height
*/
static void
gears_reshape (int width, int height)
{
/* Update the projection matrix */
perspective (ProjectionMatrix, 60.0, width / (float)height, 1.0, 1024.0);
/* Set the viewport */
glViewport (0, 0, (GLint) width, (GLint) height);
}
#if 0
/**
* Handles special eglut events.
*
* @param special the event to handle.
*/
static void
gears_special(int special)
{
switch (special) {
case EGLUT_KEY_LEFT:
view_rot[1] += 5.0;
break;
case EGLUT_KEY_RIGHT:
view_rot[1] -= 5.0;
break;
case EGLUT_KEY_UP:
view_rot[0] += 5.0;
break;
case EGLUT_KEY_DOWN:
view_rot[0] -= 5.0;
break;
}
}
#endif
static const char vertex_shader[] =
"attribute vec3 position;\n"
"attribute vec3 normal;\n"
"\n"
"uniform mat4 ModelViewProjectionMatrix;\n"
"uniform mat4 NormalMatrix;\n"
"uniform vec4 LightSourcePosition;\n"
"uniform vec4 MaterialColor;\n"
"\n"
"varying vec4 Color;\n"
"\n"
"void main(void)\n"
"{\n"
" // Transform the normal to eye coordinates\n"
" vec3 N = normalize(vec3(NormalMatrix * vec4(normal, 1.0)));\n"
"\n"
" // The LightSourcePosition is actually its direction for directional light\n"
" vec3 L = normalize(LightSourcePosition.xyz);\n"
"\n"
" // Multiply the diffuse value by the vertex color (which is fixed in this case)\n"
" // to get the actual color that we will use to draw this vertex with\n"
" float diffuse = max(dot(N, L), 0.0);\n"
" Color = diffuse * MaterialColor;\n"
"\n"
" // Transform the position to clip coordinates\n"
" gl_Position = ModelViewProjectionMatrix * vec4(position, 1.0);\n"
"}";
static const char fragment_shader[] =
"precision mediump float;\n"
"varying vec4 Color;\n"
"\n"
"void main(void)\n"
"{\n"
" gl_FragColor = Color;\n"
"}";
static void
gears_init(void)
{
GLuint v, f, program;
const char *p;
char msg[512];
glEnable (GL_CULL_FACE);
glEnable (GL_DEPTH_TEST);
/* Compile the vertex shader */
p = vertex_shader;
v = glCreateShader (GL_VERTEX_SHADER);
glShaderSource (v, 1, &p, NULL);
glCompileShader (v);
glGetShaderInfoLog (v, sizeof msg, NULL, msg);
printf ("vertex shader info: %s\n", msg);
/* Compile the fragment shader */
p = fragment_shader;
f = glCreateShader (GL_FRAGMENT_SHADER);
glShaderSource (f, 1, &p, NULL);
glCompileShader (f);
glGetShaderInfoLog (f, sizeof msg, NULL, msg);
printf ("fragment shader info: %s\n", msg);
/* Create and link the shader program */
program = glCreateProgram ();
glAttachShader (program, v);
glAttachShader (program, f);
glBindAttribLocation (program, 0, "position");
glBindAttribLocation (program, 1, "normal");
glLinkProgram (program);
glGetProgramInfoLog (program, sizeof msg, NULL, msg);
printf ("info: %s\n", msg);
/* Enable the shaders */
glUseProgram (program);
/* Get the locations of the uniforms so we can access them */
ModelViewProjectionMatrix_location =
glGetUniformLocation (program, "ModelViewProjectionMatrix");
NormalMatrix_location =
glGetUniformLocation (program, "NormalMatrix");
LightSourcePosition_location =
glGetUniformLocation (program, "LightSourcePosition");
MaterialColor_location =
glGetUniformLocation (program, "MaterialColor");
/* Set the LightSourcePosition uniform which is constant throughout
* the program */
glUniform4fv (LightSourcePosition_location, 1, LightSourcePosition);
/* make the gears */
gear1 = create_gear (1.0, 4.0, 1.0, 20, 0.7);
gear2 = create_gear (0.5, 2.0, 2.0, 10, 0.7);
gear3 = create_gear (1.3, 2.0, 0.5, 10, 0.7);
}
int
main (int argc, char **argv)
{
Data data;
CoglOnscreen *onscreen;
CoglError *error = NULL;
GSource *cogl_source;
GMainLoop *loop;
CoglRenderer *renderer;
CoglDisplay *display;
renderer = cogl_renderer_new ();
cogl_renderer_add_constraint (renderer,
COGL_RENDERER_CONSTRAINT_SUPPORTS_COGL_GLES2);
display = cogl_display_new (renderer, NULL);
data.ctx = cogl_context_new (display, NULL);
onscreen = cogl_onscreen_new (data.ctx, 300, 300);
cogl_onscreen_show (onscreen);
data.fb = COGL_FRAMEBUFFER (onscreen);
data.gles2_ctx = cogl_gles2_context_new (data.ctx, &error);
if (!data.gles2_ctx)
g_error ("Failed to create GLES2 context: %s\n", error->message);
/* Draw scene with GLES2 */
if (!cogl_push_gles2_context (data.ctx,
data.gles2_ctx,
data.fb,
data.fb,
&error))
{
g_error ("Failed to push gles2 context: %s\n", error->message);
}
gears_reshape (cogl_framebuffer_get_width (data.fb),
cogl_framebuffer_get_height (data.fb));
/* Initialize the gears */
gears_init();
cogl_pop_gles2_context (data.ctx);
cogl_source = cogl_glib_source_new (data.ctx, G_PRIORITY_DEFAULT);
g_source_attach (cogl_source, NULL);
if (cogl_has_feature (data.ctx, COGL_FEATURE_ID_SWAP_BUFFERS_EVENT))
cogl_onscreen_add_swap_buffers_callback (COGL_ONSCREEN (data.fb),
swap_complete_cb, &data);
g_idle_add (paint_cb, &data);
data.timer = g_timer_new ();
data.frames = 0;
data.last_elapsed = 0;
loop = g_main_loop_new (NULL, TRUE);
g_main_loop_run (loop);
return 0;
}