The 'cursor-mode', which currently is limited to RecordMonitor(), allows
the user to either do screen casts where the cursor is hidden, embedded
in the framebuffer, or sent as PipeWire stream metadata.
The latter allows the user to get cursor updates sent, including the
cursor sprite, without requiring a stage paint each frame. Currently
this is done by using the cursor sprite texture, and either reading
directly from, or drawing to an offscreen framebuffer which is read from
instead, in case the texture is scaled.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/357
There may be reasons to temporarly inhibit the HW cursor under certain
circumstances. Allow adding such inhibitations by adding API to the
cursor renderer to allow API users to add generic inhibitors with
whatever logic is deemed necessary.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/357
To get a consistent behaviour no matter whether HW cursors are in use or
not, make sure to copy the framebuffer content before the stage overlays
(cursor sprite textures) are painted.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/357
Mutter prefers platform devices over anything else as the primary GPU.
This will not work too well, when a platform device does not actually
have a rendering GPU but is a display-only device. An example of this
are DisplayLink devices with the proprietary driver stack, which exposes
a DRM KMS platform device but without any rendering driver.
Mutter cannot rely on EGL init failing on such devices either, because
nowadays Mesa supports software renderers on GBM, so the initialization
may well succeed.
The hardware rendering capability is recognized by matching the GL
renderer string to the known Mesa software renderers. At this time,
there is no better alternative to detecting this.
The secondary GPU data is abused for the GL renderer, as the Cogl
context may not have been created yet. Also, the Cogl context would
only be created on the primary GPU, but at this point the primary GPU
has not been chosen yet. Hence, GPU copy path GL context is used as a
proxy and predictor of what the Cogl context might be if it was created.
Mind, that even the GL flavour are not the same between Cogl and
secondary contexts, so this is stretch but it should be just enough.
The logic to choose the primary GPU is changed to always prefer hardware
rendering devices while also maintaining the old order of preferring
platform over boot_vga devices.
Co-authored by: Emilio Pozuelo Monfort <emilio.pozuelo@collabora.co.uk>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
Moves the primary GPU choosing to after all secondary gpu data has been
created.
This makes it possible for a future patch to start looking at secondary
gpu data in choose_primary_gpu () to determine if it is using a hardware
driver or a software renderer.
Co-authored by: Pekka Paalanen <pekka.paalanen@collabora.com>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
Initialize the secondary GPU data for all GPUs, even the primary one. By
not looking at the primary_gpu_kms member, a future patch is allowed to
postpone choosing the primary GPU.
A future patch will use the secondary GPU data to decide which GPU will
become the primary GPU.
Co-authored by: Pekka Paalanen <pekka.paalanen@collabora.com>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
create_renderer_gpu_data_egl_device () relied on the primary GPU being
already chosen for the "EGLDevice currently only works with single GPU
systems" error message. A future patch will choose the primary GPU after
this, not before, so this check needs to be rewritten before the
initialization order is changed.
The new check is implemented exactly as the error message says: there
must be exactly one GPU, otherwise fail.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
Make the choosing and identity of the primary GPU an internal detail to
the native renderer. MonitorManagerKms did not need it for anything.
The primary GPU logic remains unchanged.
This allows follow-up patches to change how the renderer chooses the
primary GPU. It will be easier for the renderer to use private
information for choosing.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
This is a step towards moving the primary GPU logic into the native
renderer exclusively. In the future the renderer will have one more
criterion on choosing the primary GPU than MetaMonitorManagerKms should
know about: does a GPU offer hardware rendering.
The choosing of primary GPU is separated from the discovery of GPUs.
When GPUs are discovered and added to the list, the MetaGpuKmsFlag is
now populated correctly and used in choosing.
Choosing the primary GPU is done after all GPUs have been found and is
slightly different from before:
- Skipping devices that do not belong to our seat now works instead of
becoming the primary GPU.
- Fall back to any non-platform, non-boot_vga device if neither kind is
found.
The old preference of platform over boot_vga device is kept.
The hotplug path will continue creating a gpu_kms without flags, because
at that point the primary GPU has already been chosen and the flags are
irrelevant.
Co-authored by: Pekka Paalanen <pekka.paalanen@collabora.com>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
Add a flags field to MetaGpuKms. In following commits, the flags defined
here will be set and used for choosing the primary GPU.
Co-authored by: Emilio Pozuelo Monfort <emilio.pozuelo@collabora.co.uk>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
If a KMS device has the DRM_CAP_DUMB_PREFER_SHADOW and a software based
GL driver is used, always use a shadow fb. This will speed up read backs
in the llvmpipe OpenGL implementation, making blend operations faster.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/106
DRM_EVENT_CONTEXT_VERSION is the latest context version supported by
whatever version of libdrm is present. Mutter was blindly asserting it
supported whatever version that may be, even if it actually didn't.
With libdrm 2.4.78, setting a higher context version than 2 will attempt
to call the page_flip_handler2 vfunc if it was non-NULL, which being a
random chunk of stack memory, it might well have been.
Set the version as 2, which should be bumped only with the appropriate
version checks.
https://bugzilla.gnome.org/show_bug.cgi?id=781034
The Wacom Xorg driver assigns a serial number of 1 for any pad that doesn't
have a serial. libinput assigns 0. Just treat 1 as 0 here, there are no pens
with a real serial 1 anyway.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/414
Typically, to stream the content of a window, we need a way to copy the
content of its window-actor into a buffer, transform relative input
coordinates to relative position within the window-actor and a mean to
get the window bounds within the buffer.
For this purpose, add a new GType interface `MetaScreenCastWindow` with
the methods needed for screen-cast window mode:
* meta_screen_cast_window_get_buffer_bounds()
* meta_screen_cast_window_get_frame_bounds()
* meta_screen_cast_window_transform_relative_position()
* meta_screen_cast_window_capture_into()
This interface is meant to be implemented by `MetaWindowActor` which has
access to all the necessary bits to implement them.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/306
To be able to cast windows, which by definition can change in size
dynamically, we need a way to specify the video crop meta to adjust to
the window size whenever it changes.
Add VideoCrop support with a new optional hook `get_videocrop()` in the
`ScreenCastStreamSrcClass` which, if defined, can let the child specify
a rectangle for the video cropping area.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/306
Switch-configs are only to be used in certain circumstances (see
meta_monitor_manager_can_switch_config()) so when ensuring
configuration and attempting to create a linear configuration, use the
linear configuration constructor function directly without going via the
switch config method, otherwise we might incorrectly fall back to the
fallback configuration (only enable primary monitor).
This is a regression introduced by 6267732bec.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/342
Which eliminates the 1px jitter that was visible when dragging windows,
and eliminates the flickering that was visible when pushing the cursor
against the right/bottom edges of the screen.
If a display device (touchscreen, tablet with libwacom integration flags)
does not receive a monitor through settings. Delegate on the
MetaInputMapper so it receives a mapping through heuristics.
This object takes care of mapping absolute devices to monitors,
to do so it uses 3 heuristics, in this order of preference:
- If a device is known to be builtin, it's assigned to the
builtin monitor.
- If input device and monitor match sizes (with an error margin
of 5%)
- If input device name and monitor vendor/product in EDID match
somehow (from "full", through "partial", to just "vendor")
The most favorable outputs are then assigned to each device, making
sure not to assign two devices of the same kind to the same output.
This object replaces (and is mostly 1:1 with) GsdDeviceMapper in
g-s-d. That object would perform these same heuristics, and let
mutter indirectly know through settings changes. This object allows
doing the same in-process.
Since now we don't set the swap throttled value based
on sync-to-vblank, we can effectively remove it from
Cogl. Throttling swap buffers in Cogl is as much a
historical artifact as sync-to-vblank. Furthermore,
it doesn't make sense to disable it on a compositor,
which is the case with the embedded Cogl.
In addition to that, the winsys vfunc for updating
whenever swap throttling changes could also be removed,
since swap throttling is always enabled now.
Removing it means less code, less branches when running,
and one less config option to deal with.
This also removes the micro-perf test, since it doesn't
make sense for the case where Cogl is embedded into the
compositor.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/191
Externally setting the sync-to-vblank setting was a feature
added as a workaround to old Intel and ATI graphic cards, and
is not needed anymore. Furthermore, it doesn't make sense to
change it on a compositor whatsoever.
This commit removes all the ways to externally change this
setting, as well as the now unused API.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/191
The nested stage tries to emulate how CRTCs are drawn, but fails to do
this when a stage view is scaled as it didn't adapt the viewport size
according to the stage view scale.
https://bugzilla.gnome.org/show_bug.cgi?id=786663
Add MUTTER_DEBUG_DUMMY_MONITORS_SPECS env variable support so that you can define
a ':' separated list of monitor specs in the form of WWWxHHH@RR that will be
available for configuring the nested mutter.
When calculating the logical monitor layout size given a scale, don't
risk precision loss by float to int casting, which could result in a too
small layout.
https://bugzilla.gnome.org/show_bug.cgi?id=765011
We haven't supported disabling stage views in the native backend since
commit 70edc7dda4
Author: Jonas Ådahl <jadahl@gmail.com>
Date: Mon Jul 24 12:31:32 2017 +0800
backends/native: Stop supporting stage views being disabled
There were still some left over checks; lets remove them.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/343
Modal ungrabs may be followed by other clients trying to grab themselves,
flush the connection so we ensure the right order of events on the Xserver
side.
An example of this is js/ui/modalDialog.js in gnome-shell, as the alt-F2
dialog may launch X11 clients trying to grab themselves, commit a40daa3c22
in gnome-shell handled the case and added a gdk_display_sync() call to
ensure no grab existed at the time of executing.
This commit aims to achieve the same built in MetaBackend. A full sync
seems excessive though, as we just need to make sure the server got the
messages queued before the other side tries to grab, a XFlush seems
sufficient for this.
The nested backend used the value from udev, meaning that one couldn't
configure the fake monitor if the laptop panel of the host was closed.
Avoid this annoyance by always having the nested backend claiming the
lid is open.
It wasn't implemented by any subclass, it's not provided by DRM either.
And even if a subclass were to have only a file available, it could read
it into a GBytes as well and just use `read_edid()`.
Found this while working on !269.
Because it is implemented and always on. By advertising this fact
the master clock is able to sync to the native refresh rate instead
of always using the fallback of 60.00Hz.
https://bugzilla.gnome.org/show_bug.cgi?id=781296
Add support for getting hardware presentation times from KMS (Wayland
sessions). Also implement cogl_get_clock_time which is required to compare
and judge the age of presentation timestamps.
For single monitor systems this is straightforward. For multi-monitor
systems though we have to choose a display to sync to. The compositor
already partially solves this for us in the case of only one display
updating because it will only use the subset of monitors that are
changing. In the case of multiple monitors consuming the same frame
concurrently however, we choose the fastest one (in use at the time).
Note however that we also need !73 to land in order to fully realize
multiple monitors running at full speed.
Use cogl_framebuffer_read_pixels_into_bitmap () instead of
glReadPixels () for the CPU copy path in multi-GPU support.
The cogl function employs several tricks to make the read-pixels as fast
as possible and does the y-flip as necessary. This should make the copy
more performant over all kinds of hardware.
This is expected to be used on virtual outputs (e.g. DisplayLink USB
docks and monitors) foremost, where the dumb buffer memory is just
regular system memory. If the dumb buffer memory is somehow slow, like
residing in discrete VRAM or having an unexpected caching mode, it may
be possible for the cogl function perform worse because it might do the
y-flip in-place in the dumb buffer. Hopefully that does not happen in
any practical scenario.
Calling meta_renderer_native_gles3_read_pixels () here was conceptually
wrong to begin with because it was done with the Cogl GL context of the
primary GPU, not on the GL ES 3 context of a secondary GPU. However,
due eglBindAPI being a no-op in Mesa and the glReadPixels () arguments
being compatible, it worked.
This patch adds a pixel format conversion table between DRM and Cogl
formats. It contains more formats than absolutely necessary and the
texture components field which is currently unused for completeness. See
Mutter issue #323. Making the table more complete documents better how
the pixel formats actually map so that posterity should be less likely
to be confused. This table could be shared with
shm_buffer_get_cogl_pixel_format () as well, but not with
meta_wayland_dma_buf_buffer_attach ().
On HP ProBook 4520s laptop (Mesa DRI Intel(R) Ironlake Mobile, Mesa
18.0.5), without this patch copy_shared_framebuffer_cpu () for a
DisplayLink output takes 5 seconds with a 1080p frame. Obviously that
makes Mutter and gnome-shell completely unusable. With this patch, that
function takes 13-18 ms which makes it usable if not fluent.
On Intel i7-4790 (Mesa DRI Intel(R) Haswell Desktop) machine, this patch
makes no significant difference (the copy takes 4-5 ms).
The format will be needed in a following commit in the CPU copy path
which stops hardcoding another format and starts using the format the
dumb FB was created with.
Change the callers of init_dumb_fb () to use DRM format codes. DRM and
GBM format codes are identical, but since this is about dumb buffers,
DRM formats fit better.
The header /usr/include/gbm.h installed by Mesa says:
* The FourCC format codes are taken from the drm_fourcc.h definition, and
* re-namespaced. New GBM formats must not be added, unless they are
* identical ports from drm_fourcc.
That refers to the GBM_FORMAT_* codes.
Virtual keyboard and pointer are freed on session close, but the
virtual touchscreen isn't.
Avoid a leak by freeing the virtual touchscreen along with the rest of
virtual devices.
We were using the connector_id for the winsys_id, but different
devices could have connectors with the same id. Since we use
winsys_id to uniquely identify outputs, use both the connector
id and the device id to avoid having outputs with the same id.
Python is not guaranteed to be installed in /usr/bin. This is especially
true for *BSD systems which don't consider Python as an integral part of
their systems.
Don't schedule redraws when being headless; there is nothing to draw so
don't attempt to draw. This also makes a flaky test become non-flaky, as
it previously spuriously got warnings due to windows being "painted"
when headless but lacking frame timings, as nothing was actually
painted.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/170
The empty MetaStage was in meta-stage-private.h for no reason, so lets
move it to the C file. This makes it pointless to have a private
instance struct, so just move the fields to the private struct
_MetaStage.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/170
While leaving the runtime checks in place, requiring xrandr 1.5 at build
time allows us to remove some seemingly unnecessary conditional
inclusion of functionality.
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
drmModePageFlip() is guaranteed to fail for the invalid FB id 0.
Therefore it never makes sense to call this function with such argument.
Disabling a CRTC must be done with SetCrtc instead, for example.
Trying to flip to FB 0 not only fails, but it also causes Mutter to
never try page flip on this output again, using drmModeSetCrtc()
instead.
There was a race in setting next_fb_id when a secondary GPU was using
the CPU copy path. Losing this race caused the attempt to
drmModePageFlip () to FB ID 0 which is invalid and always fails. Failing
to flip causes Mutter to fall back to drmModeSetCrtc () permanently.
In meta_onscreen_native_swap_buffers_with_damage ():
- update_secondary_gpu_state_pre_swap_buffers ()
- copy_shared_framebuffer_cpu () but only on the CPU copy path
- secondary_gpu_state->gbm.next_fb_id is set
- wait_for_pending_flips ()
- Waits for any remaining page flip events and executes and destroys
the related page flip closures.
- on_crtc_flipped ()
- meta_onscreen_native_swap_drm_fb ()
- swap_secondary_drm_fb ()
- secondary_gpu_state->gbm.next_fb_id = 0;
- meta_onscreen_native_flip_crtcs ()
- meta_onscreen_native_flip_crtc ()
- meta_gpu_kms_flip_crtc () gets called with fb_id = 0
This race was observed lost when running 'mutter --wayland' on a machine
with two outputs on Intel and one output on DisplayLink USB dock, and
wiggling around a weston-terminal window between the Intel and
DisplayLink outputs. It took from a second to a minute to trigger. For
testing with DisplayLink outputs Mutter also needed a patch to take the
DisplayLink output into use, as it would have otherwise been ignored
being a platform device rather than a PCI device.
Fix this race by first waiting for pending flips and only then
proceeding with the swap operations. This should be safe, because the
pending flips could have completed already before entering
meta_onscreen_native_swap_buffers_with_damage ().
When constructing MetaMonitorsConfig objects, store which type
of switch_config they are for (or UNKNOWN if it is not such
type of config).
Stop unconditionally setting current_switch_config to UNKNOWN when
handling monitors changed events. Instead, set it to the switch_config
type stored in the MonitorsConfig in the codepath that updates logical
state. In addition to being called in the hotplug case along the same
code flow that generates monitors changed events, this is also called
in the coldplug case where a secondary monitor was connected before
mutter was started.
When creating the default linear display config, create it as a
switch_config so that internal state gets updated to represent
linear mode when this config is used.
The previous behaviour of unconditionally resetting current_switch_config
to UNKNOWN was breaking the internal state machine for display config
switching, causing misbehaviour in gnome-shell's switchMonitor UI when
using display switch hotkeys. The lack of internal tracking when the
displays are already in the default "Join Displays" linear mode was
then causing the first display switch hotkey press to do nothing
(it would attempt to select "Join Displays" mode, but that was already
active).
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/281https://gitlab.gnome.org/GNOME/mutter/merge_requests/213
meta_renderer_native_gles3_read_pixels() was assuming that the target
buffer stride == width * 4. This is not generally true. When a DRM
driver allocates a dumb buffer, it is free to choose a stride so that
the buffer can actually work on the hardware.
Record the driver chosen stride in MetaDumbBuffer, and use it in the CPU
copy path. This should fix any possible stride issues in
meta_renderer_native_gles3_read_pixels().
Track the allocated dumb buffer size in MetaDumbBuffer. Assert that the
size is as expected in copy_shared_framebuffer_cpu().
This is just to ensure that Cogl and the real size match. The size from
Cogl was used in the copy, so getting that wrong might have written
beyond the allocation.
This is a safety measure and has not been observed to happen yet.
If drmModeAddFB2() does not work, the fallback to drmModeAddFB() can
only handle a single specific format. Make sure the requested format is
that one format, and fail the operation otherwise.
This should at least makes the failure mode obvious on such old systems
where the kernel does not support AddFB2, rather than producing wrong
colors.
Previously, trackballs were detected based on the presence of the
substring "trackball" in the device name. This had the downside of
missing devices, such as the Kensington Expert Mouse, which don't have
"trackball" in their names.
Rather than depending on the device name, use the ID_INPUT_TRACKBALL
property from udev to determine whether or not to treat a device as a
trackball.
This adds a new function, `is_trackball_device`, to MetaInputEvents, and
eliminates the `meta_input_device_is_trackball` function.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/258
The "backends: Move MetaOutput::crtc field into private struct"
accidentally changed the view transform calculation code to assume that
"MetaCrtc::transform" corresponds to the transform of the CRTC; so is
not the case yet; one must calculate the transform from the logical
monitor, and check whether it is supported by the CRTC using
meta_monitor_manager_is_transform_handled(). This commit restores the
old behaviour that doesn't use MetaCrtc::transform when calculating the
view transform.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/216
We need a way for mutter to exit if no available GPUs are going to work.
For example if gdm starts gnome-shell and we're using a DRM driver that
doesn't work with KMS then we should exit so that GDM can try with Xorg,
rather than operating in headless mode.
Related: https://gitlab.gnome.org/GNOME/mutter/issues/223
meta_backend_x11_grab_device is performing X server clock comparison
using the MAX macro, which comes down to a simple greater-than.
Use XSERVER_TIME_IS_BEFORE, which is a better macro for X server
clock comparisons, as it accounts for 32-bit wrap-around.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/174
Commit c0d9b08ef9 replaced the old GBM API calls
with the multi-plane GBM API. However, the call to gbm_bo_get_handle_for_plane
fails for some DRI drivers (in particular i915). Due to missing error checks,
the subsequent call to drmModeAddFB[2] fails and the screen output locks up.
This commit adds the missing error checks and falls back to the old GBM API
(non-planar) if necessary.
v5: test success of gbm_bo_get_handle_for_plane instead of errno
This commit adopts solution proposed by Daniel van Vugt to check the return
value of gbm_bo_get_handle_for_plane on plane 0 and fall back to old
non-planar method if the call fails. This removes the errno check (for
ENOSYS) that could abort if mesa ever sets a different value.
Related to: https://gitlab.gnome.org/GNOME/mutter/issues/127
The function is intentionally provided as macro to not require a
cast. Recently the macro was improved to check that the passed in
pointer matches the free function, so the cast to GDestroyNotify
is now even harmful.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/176
For historical reasons meta_monitor_is_active() checked whether it is
active by checking whether the main output have a CRTC assigned and
whether that CRTC has a current mode. At a later point, the MetaMonitor
got its own mode abstraction (MetaMonitorMode), but
meta_monitor_is_active() was never updated to use this.
An issue with checking the main output's CRTC state is that, if there is
some CRTC mode combination that for some reason isn't properly detected
by the MetaMonitorMode abstraction (e.g. some tiling configuration not
yet handled), meta_monitor_is_active() would return TRUE, even though no
(abstracted) mode was set. This would cause confusion here and there,
leading to NULL pointer dereferences due to the assumption that if a
monitor is active, it has an active mode.
Instead, change meta_monitor_is_active() to directly check the current
monitor mode, and log a warning if the main output still happen to have
a CRTC with a mode assigned to it. This way, when an not undrestood CRTC
mode combination is encountered, instead of dereferencing NULL pointers,
simply assume the monitor is not active, which means that it will not be
managed or rendered by mutter at all.
https://gitlab.gnome.org/GNOME/mutter/issues/130
Avoid exporting through org.gnome.Mutter.DisplayConfig.GetCurrentState
excessively-low screen resolutions setting both a minimum width and a minimum
height. GetCurrentState is e.g. used by Gnome Control Center to build a list of
selectable resolutions.
Fixes: https://bugzilla.gnome.org/show_bug.cgi?id=793223
If drmModeSetCrtc() is called with no fb, mode or connectors for some
CRTC it may still fail, and we should handle that gracefully instead of
assuming it failed to set a non-disabled state.
Closes https://gitlab.gnome.org/GNOME/mutter/issues/70
Add API to let GNOME Shell have the ability to get notified about remote
access sessions (remote desktop, remote control and screen cast), and
with a way to close them.
This is done by adding an abstraction above the remote desktop and
screen cast session objects, to avoid exposing their objects to outside
of mutter. Doing that would result in external parts holding references
to the objects, complicating their lifetimes. By using separate wrapper
objects, we avoid this issue all together.
Monitor whether UPower is running ourselves. That allows us to keep the
same value for "lid-is-closed" throughout the process of UPower
restarting, preventing unwanted monitor re-configuration through the process.
Fixes another screen black out when UPower restarts and the laptop lid
is closed.
Rather than handle UpClient in both MetaBackend (to reset the idletime
when the lid is opened), and in MetaMonitorManager and
MetaMonitorConfigManager (to turn the screen under the lid on/off
depending on its status), move the ability to get the lid status from
UPower or mock it in one place, in MetaBackend.
Restarting UPower will make every property of UpClient emit a "notify"
signal (as a GDBusProxy would). Avoid mutter reconfiguring the displays
when upower restarts by caching the last known value of "lid-is-closed"
and only reconfiguring the displays if it actually changed.
This fixes a black out of the screen when UPower restarts.
The framerate for screen cast sources was set to variable within 1 FPS
and the framerate of the monitor being screen casted. This meant that if
the sink didn't match the framerate (e.g. had a lower max framerate),
the formats would not match and a stream would not be established.
Allow letting the sink clamp the framerate range by setting it as
'unset', allowing it to be negotiated.
The PipeWire master branch saw some backports from the work branch,
including API changes making the 0.1 series more aligned with future
plans. Make mutter use the new API. This is needed to avoid dead locks
that existed in the older version.
Force update the cursor renderer after theme or size changes; otherwise
we'll be stuck with the old theme and/or size until something else
triggers resetting of the cursor.
- Stop using CurrentTime, introduce META_CURRENT_TIME
- Use g_get_monotonic_time () instead of relying on an
X server running and making roundtrip to it
https://bugzilla.gnome.org/show_bug.cgi?id=759538
They are X11 specific functions, used for X11 code. They have been
improved per jadahl's suggestion to use gdk_x11_lookup_xdisplay and
gdk_x11_display_error_trap_* functions, instead of current code.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
- Moved xdisplay, name and various atoms from MetaDisplay
- Moved xroot, screen_name, default_depth and default_xvisual
from MetaScreen
- Moved some X11 specific functions from screen.c and display.c
to meta-x11-display.c
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Make it so that each logical monitor has a reference to all the
monitors that are assigned to it.
All monitors has a reference to each output that belongs to it.
Each output has a reference to any CRTC it has been assigned.
https://bugzilla.gnome.org/show_bug.cgi?id=786929
For some reason "backends: Remove X11 idle-monitor backend" removed
unrelated warning messages for when generated monitor configurations
that should work didn't, which also made the unit tests fail.
This commit adds them back, which also makes the tests pass again.
Commit 712ec30cd9 added the logic to only
choose EGL configs that match the GBM_FORMAT_XRGB8888 pixel format.
However, there won't be any EGL config satisfying such criteria for
non-GBM backends, such as EGLDevice.
This change will let us choose the first EGL config for the EGLDevice
backend, while still forcing GBM_FORMAT_XRGB8888 configs for the GBM
one.
Related to: https://gitlab.gnome.org/GNOME/mutter/issues/2
Where to realize a hardware cursor depends on where on the screen it
will be displayed. For example it only needs buffers for the cursor
plane on a certain GPU if it overlaps with a monitor that is connected
said GPU.
Previously, we were too eager with uploading the cursor plane buffers,
which in effect resulted in the secondary GPU always being woken up
when changing the cursor, even though the cursor plane would actually
never be set unless the pointer cursor was moved to a monitor connected
to the secondary GPU. These wake-ups caused noticable stuttering; thus
by uploading the buffers more lazilly, the stuttering is avoided.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/77
When a cursor is hidden, the native backend will properly hide the HW
cursor sprite as well, but it would communicate this as if the cursor
was not handled by the backend, while in fact it still was. This caused
the generic cursor rendering layer to queue a redraw.
https://gitlab.gnome.org/GNOME/mutter/issues/77
When force-updating the HW state we might end up with a situation where
the HW cursor is no longer usable. If this would happen, we'd before
this commit not trigger the fallback paths using a GL texture.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It is already handled by the monitor-updated-internal signal handler in
meta-cursor-renderer-native.c, which will always be called indirectly
by resuming the monitor manager.
While at it, remove a useless comment.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Call it meta_cursor_renderer_update_cursor. This avoids confusing it
with the update_cursor MetaCursorRendererClass vfunc when navigating
the file.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It knows better when it's needed. For now, just do it just as before,
before drawing. Eventually, we can conditionalize where to realize
depending on the cursor sprite position.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Use a common entry point into the cursor renderer implementations HW
cursor realization paths for all cursor sprite types. This is in
preparation for realizing at more strategic times.
https://gitlab.gnome.org/GNOME/mutter/issues/77
The end goal here is to being able to realize at any point in time
through a single API, so start by moving state into the cursor sprite
implementation.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Remove some X11 compositing manager specific code from the general
purpose cursor tracker into a new MetaCursorSprite based special
purpose XFIXES cursor sprite.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Introduce a new type MetaCursorSpriteXcursor that is a MetaCursorSprite
implementation backed by Xcursor images. A plain MetaCursorSprite can
still be created "bare bone", but must be manually provided with a
texture. These usages will eventually be wrapped into new
MetaCursorSprite types while turning MetaCursorSprite into an abstract
type.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It was prefixed with meta_cursor_, but it took a X11 Display, so update
the naming. Eventually it should be duplicated depending if it's a
frontend X11 connection call or a backend X11 connection call and moved
to the corresponding layers, but let's just do this minor cleanup for
now.
https://gitlab.gnome.org/GNOME/mutter/issues/77
This makes it possible to move out backing store specific code (such as
Xcursor handling) to separate units, while also making it easier to add
more types).
https://gitlab.gnome.org/GNOME/mutter/issues/77
drmModeAddFB2 allows userspace to specify a real format enum on
non-ancient kernels, as an improvement over the legacy drmModeAddFB
which derives format from a fixed depth/bpp mapping.
As an optimisation, Weston used to decide at the first failure of
drmModeAddFB2 that the ioctl was unavailable: as non-existent DRM
ioctls return -EINVAL rather than -ENOSYS or similar, bad parameters are
not distinguishable from the ioctl not being present.
Mutter has also implemented the same optimisation for dumb framebuffers,
which potentially papers over errors for the gain of avoiding one ioctl
which will rapidly fail on ancient kernels. Remove the optimisation and
always use AddFB2 where possible.
Closes: #14
When using the EGLStream backend, the MetaRendererNative passed a
GClosure to KMS when using EGLStreams, but KMS flip callback event
handler in meta-gpu-kms.c expected a closure wrapped in a closure
container, meaning it'd instead crash when using EGLStreams. Make the
flip handler get what it expects also when using EGLStreams by wrapping
the flip closure in the container before handing it over to EGL.
https://bugzilla.gnome.org/show_bug.cgi?id=790316
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471
Various code assumed PipeWire function calls would never fail. Some can
actually fail for real reasons, and some currently can only fail due to
OOM situations, but we should still not assume that will always be the
case.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/102
Before we just set it to "none", but this was not enough since various
calls will depend on not just the context being active, but the main
rendering surface.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/21
When deriving the global scale directly from the current hardware state
(as done when using the X11 backend) we are inspecting the logical
state they had prior to the most recent hot plug. That means that a
primary monitor might have been disabled, and a new primary monitor may
not have been assigned yet.
Stop assuming a primary monitor has an active mode before having
reconstructed the logical state by finding some active monitor if the
old primary monitor was disabled. This avoids a crash when trying to
derive the global scale from a disabled monitor.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/130
As a follow up to the patch from a95cbd0a, we need to make sure
that the pointer is out of the way as well when monitors changed,
since that's the event that will prevail in some cases. Besides,
this is also consistent with what the code before a95cbd0a was,
which initialized the pointer position in the same way both in
this case and in the real_post_init() function.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/157
Centering the pointer at startup causes undesired behaviour if
it ends up hovering over reactive elements, that might react
to that positioning, causing confusion. This is the case of
the login dialog when a list of different users is shown, as
centering the pointer at startup in that case will get the
user in the center of the screen pre-selected, which is not
the expected behaviour (i.e. pre-selecting the first one).
Fix this by simply moving the pointer out of the way, close
to the bottom-right corner, during initialization.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/157
This is a small mistake spotted while working on a solution
for #77. When a GPU fails to initialize, we're adding them
anyway, which might have pretty bad consequences when trying
to use these NULL GPUs.
Issue: #77
Make it re-enable:able by a hidden "experimental feature". To enable, add
"kms-modifiers" to the org.gnome.mutter.experimental-features GSettings entry.
The ResetIdletime API can be used instead of an "XTest" binary to
programmatically reset the idle time, as if the user pressed a button on
a keyboard.
This is necessary since we stopped using the XSync extension to monitor
idletimes, as it didn't consider inhibitors as busy, and mutter's
clutter code ignores "Core Events" as generated by XTest.
This patch will require minimal changes to gnome-settings-daemon's power
test suite so that "key press" idletime resets are triggered through
this D-Bus interface rather than through XTest and a roundtrip through
the X server.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
Take idle inhibitions into account for when to fire idle watches as
requested by OS components.
This should stop gnome-session and gnome-settings-daemon considering
the session idle when they have been inhibited for longer than their
timeout, for example to avoid the screensaver activating, or the
computer suspending after watching a film.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
Now that we've removed the X11 specific backend of the idle monitor,
add back a cut-down version of it for the explicit purpose of being
told about idle time resets when XTest events are used.
XTest events are usually used by test suites and remote display software
to inject events into an X11 session. We should consider somebody moving
the mouse remotely to be just as "active" as somebody moving it locally.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
And use the old "native" backend for both X11 and Wayland. This will
allow us to share fixes between implementations without having to delve
into the XSync X11 extension code.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
Output ID is set equal to 'i' later in the loop. But 'i' was never
incremented, so all outputs were getting the same ID (equal to
the number of CRTCs, because 'i' was reused from the previous loop).
(cherry picked from commit 23c3f8bb18)
If we attempt GBM surface allocation with a set of modifiers but the
allocation fails, fall back to non-modifier allocations. This fixes
startup on Pineview-based Atom systems, where KMS provides us a set of
modifiers but the GBM implementation doesn't support modifier use.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/84
Rotating an output would show duplicate cursors when the pointer is
located over an area which would be within the output if not rotated.
Make sure to swap the width/height of the output when rotated.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/85
Rendering the next frame (which mostly happens as part of the flush done
in swap buffers) is a task that the GPU can complete independently of
the CPU having to wait for previous page flips. So reverse their order
to get the GPU started earlier, with the aim of greater GPU-CPU
parallelism.
When using two monitors size by side with different scales, once the
cursor moves from one output to another one, its size changes based on
the scale of the given output.
Changing the size of the cursor can cause the cursor area to change
output again if the hotspot is not exactly at the top left corner of the
area, causing the texture of the cursor to change, which will trigger
another output change, so on and so forth causing continuous surface
enter/leave event which flood the clients and eventually kill them.
Change the logic to use only the actual cursor position to determine if
its on the given logical monitor, so that it remains immune to scale
changes induced by output scale differences.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/83
We just arbitrarily chose the first EGL config matching the passed
attributes, but we then assumed we always got GBM_FORMAT_XRGB8888. That
was not a correct assumption. Instead, make sure we always pick the
format we expect.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/2
In order to let applications gracefully handle version mismatches, add
a version property to the APIs. Also add a warning on the APIs that
these are not meant for public consumption.
If the coordinates was for a stream not at the stage position (0, 0),
they'd be incorrect. Fix this by correctly translating the coordinates
according to the stream position.
When the buffer modifier is DRM_FORMAT_MOD_LINEAR, we can use the
old code path. That means not specifying any modifier parameter.
It was an issue when the primary GPU was creating a linear GBM surface
and that a secondary GPU (not supporting modifiers) was trying to
import it. It was failing because the driver could not use the
import_modifiers extension even though it could in theory easily
import the buffer.
https://gitlab.gnome.org/GNOME/mutter/issues/18
We were retrieving the supported KMS modifiers for all GPUs even
though what we really need to intersect between these sets of
modifiers:
1) KMS supported modifiers for primary GPU if the GPU is used for
scanout;
2) EGL supported modifiers for secondary GPUs (different than the
primary GPU used for rendering);
3) GBM supported modifiers when creating the surface (already
taken care of by gbm_surface_create_with_modifiers());
https://gitlab.gnome.org/GNOME/mutter/issues/18
So the changes can be instantly applied while the tool is in proximity.
Before we would just do it on proximity-in, which doesn't provide a
good look&feel while modifying the tool settings in g-c-c.
https://gitlab.gnome.org/GNOME/mutter/issues/38Closes: #38
The property has been 32 bits since around 2011 and has not changed, mutter
expects it to be 8 bits. The mismatch causes change_property to never
actually change the property.
https://gitlab.gnome.org/GNOME/mutter/issues/26Closes: #26
This was done by the clutter X11 backend before prior to introducing
MetaRenderer, but during that work, enabling of said extension was lost.
Let's turn it on again.
https://bugzilla.gnome.org/show_bug.cgi?id=739178
There seems to be a kernel race when one disconnects an external
monitor connected to a DisplayPort via a USB-C adapter. The race
results in a connector being reported as connected, but without any
modes supported.
This had the side effect that we tried to set a preferred mode to
the first listed mode, but as no modes were available, we instead tried
to dereference the first element of a NULL array, causing a
segmentation fault.
Mitigate this by skipping adding output if no supported modes are
advertised and the output doesn't support scaling, while moving the
fallback path for calculating a preferred output mode to after possibly
adding the common modes, to avoid the unvolentary NULL dereference.
https://bugzilla.gnome.org/show_bug.cgi?id=789501
Opening and closing the device may result into XI2 grabs being cut short,
resulting into pad buttons being rendered ineffective, and other possible
misbehaviors. This is an XInput flaw that fell in the gap between XI1 and
XI2, and has no easy fix. It pays us for mixing both versions, I guess...
Work this around by keeping the XI1 XDevice attached to the
ClutterInputDevice, this way it will live long enough that this is not
a concern.
Investigation of this bug was mostly carried by Peter Hutterer, I'm just
the executing hand.
https://gitlab.gnome.org/GNOME/mutter/issues/7Closes: #7
A comparison in translate_device_event() does not account for the fact
that X's clock wraps about every 49.7 days. When triggered, this causes
an unresponsive GUI.
Replace simple less-than comparison with XSERVER_TIME_IS_BEFORE macro,
which accounts for the wrapping of X's clock.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/12