Commit Graph

10 Commits

Author SHA1 Message Date
Damien Lespiau
8f6bf57dfb cogl: Fix unused variable warning with GLES2
This shader variable is only used with big GL.
2010-11-30 16:03:26 +00:00
Neil Roberts
3cad93b8a2 cogl-shader.c: Don't add the common boilerplate twice
In 6246c2bd6 I moved the code to add the boilerplate to a shader to a
separate function and also made it so that the common boilerplate is
added as a separate string to glShaderSource. However I didn't notice
that the #define for the vertex and fragment shaders already includes
the common part so it was being added twice. Mesa seems to accept this
but it was causing problems on the IMG driver because COGL_VERSION was
defined twice.
2010-11-29 13:43:09 +00:00
Neil Roberts
46e59dc50f Move the cogl shader boilerplate setting code to a separate function
_cogl_shader_compile_real had some code to create a set of strings to
combine the boilerplate code with a shader before calling
glShaderSource. This has now been moved to its own internal function
so that it could be used from the GLSL pipeline backend as well.
2010-11-24 18:06:43 +00:00
Robert Bragg
353ea5299b cogl-shader: Prepend boilerplate for portable shaders
We now prepend a set of defines to any given GLSL shader so that we can
define builtin uniforms/attributes within the "cogl" namespace that we
can use to provide compatibility across a range of the earlier versions
of GLSL.

This updates test-cogl-shader-glsl.c and test-shader.c so they no longer
needs to special case GLES vs GL when splicing together its shaders as
well as the blur, colorize and desaturate effects.

To get a feel for the new, portable uniform/attribute names here are the
defines for OpenGL vertex shaders:

 #define cogl_position_in gl_Vertex
 #define cogl_color_in gl_Color
 #define cogl_tex_coord_in  gl_MultiTexCoord0
 #define cogl_tex_coord0_in gl_MultiTexCoord0
 #define cogl_tex_coord1_in gl_MultiTexCoord1
 #define cogl_tex_coord2_in gl_MultiTexCoord2
 #define cogl_tex_coord3_in gl_MultiTexCoord3
 #define cogl_tex_coord4_in gl_MultiTexCoord4
 #define cogl_tex_coord5_in gl_MultiTexCoord5
 #define cogl_tex_coord6_in gl_MultiTexCoord6
 #define cogl_tex_coord7_in gl_MultiTexCoord7
 #define cogl_normal_in gl_Normal

 #define cogl_position_out gl_Position
 #define cogl_point_size_out gl_PointSize
 #define cogl_color_out gl_FrontColor
 #define cogl_tex_coord_out gl_TexCoord

 #define cogl_modelview_matrix gl_ModelViewMatrix
 #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix
 #define cogl_projection_matrix gl_ProjectionMatrix
 #define cogl_texture_matrix gl_TextureMatrix

And for fragment shaders we have:

 #define cogl_color_in gl_Color
 #define cogl_tex_coord_in gl_TexCoord

 #define cogl_color_out gl_FragColor
 #define cogl_depth_out gl_FragDepth

 #define cogl_front_facing gl_FrontFacing
2010-11-10 14:24:52 +00:00
Neil Roberts
63206a208b Merge cogl-program-{gl,gles}.c into one cogl-program.c
This merges the two implementations of CoglProgram for the GLES2 and
GL backends into one. The implementation is more like the GLES2
version which would track the uniform values and delay sending them to
GL. CoglProgram is now effectively just a GList of CoglShaders along
with an array of stored uniform values. CoglProgram never actually
creates a GL program, instead this is left up to the GLSL material
backend. This is necessary on GLES2 where we may need to relink the
user's program with different generated shaders depending on the other
emulated fixed function state. It will also be necessary in the future
GLSL backends for regular OpenGL. The GLSL and ARBfp material backends
are now the ones that create and link the GL program from the list of
shaders. The linked program is attached to the private material state
so that it can be reused if the CoglProgram is used again with the
same material. This does mean the program will get relinked if the
shader is used with multiple materials. This will be particularly bad
if the legacy cogl_program_use function is used because that
effectively always makes one-shot materials. This problem will
hopefully be alleviated if we make a hash table with a cache of
generated programs. The cogl program would then need to become part of
the hash lookup.

Each CoglProgram now has an age counter which is incremented every
time a shader is added. This is used by the material backends to
detect when we need to create a new GL program for the user program.

The internal _cogl_use_program function now takes a GL program handle
rather than a CoglProgram. It no longer needs any special differences
for GLES2. The GLES2 wrapper function now also uses this function to
bind its generated shaders.

The ARBfp shaders no longer store a copy of the program source but
instead just directly create a program object when cogl_shader_source
is called. This avoids having to reupload the source if the same
shader is used in multiple materials.

There are currently a few gross hacks to get the GLES2 backend to work
with this. The problem is that the GLSL material backend is now
generating a complete GL program but the GLES2 wrapper still needs to
add its fixed function emulation shaders if the program doesn't
provide either a vertex or fragment shader. There is a new function in
the GLES2 wrapper called _cogl_gles2_use_program which replaces the
previous cogl_program_use implementation. It extracts the GL shaders
from the GL program object and creates a new GL program containing all
of the shaders plus its fixed function emulation. This new program is
returned to the GLSL material backend so that it can still flush the
custom uniforms using it. The user_program is attached to the GLES2
settings struct as before but its stored using a GL program handle
rather than a CoglProgram pointer. This hack will go away once the
GLSL material backend replaces the GLES2 wrapper by generating the
code itself.

Under Mesa this currently generates some GL errors when glClear is
called in test-cogl-shader-glsl. I think this is due to a bug in Mesa
however. When the user program on the material is changed the GLSL
backend gets notified and deletes the GL program that it linked from
the user shaders. The program will still be bound in GL
however. Leaving a deleted shader bound exposes a bug in Mesa's
glClear implementation. More details are here:

https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-28 19:51:42 +01:00
Robert Bragg
63fd426b4b cogl-shader: get_info_log should always use strdup
In the case where there is no error log for arbfp we were returning a
"" string literal. The other paths were using g_strdup to return a
string that could be freed with g_free. This makes the arbfp path return
g_strdup ("") instead.
2010-08-12 16:50:47 +01:00
Robert Bragg
a0247f294d cogl-shader: correctly #ifdef guard an if else block
There are quite a few if {} else {} blocks for dealing with arbfp else
glsl and the first block is guarded with #ifdef HAVE_COGL_GL. In this
case though the #endif was before the else so it wouldn't compile for
gles.
2010-08-12 16:50:47 +01:00
Emmanuele Bassi
242afd96eb Silence a compiler warning 2010-08-09 19:38:23 +01:00
Robert Bragg
65196a4a9b cogl: Allow setting ARBfp source on a CoglShader
This makes CoglProgram/Shader automatically detect when the user has
given an ARBfp program by checking for "!!ARBfp1.0" at the beginning of
the user's source.

ARBfp local parameters can be set with cogl_program_uniform_float
assuming you pass a @size of 4 (all ARBfp program.local parameters
are vectors of 4 floats).

This doesn't expose ARBfp environment parameters or double precision
local parameters.
2010-08-09 17:27:02 +01:00
Robert Bragg
7705469d2b cogl-shader: unifies the driver/{gl,gles} shader files
The per driver implementations of cogl-shader.c had become almost
identical we now have a single cogl/cogl-shader.c instead.
2010-08-03 12:41:37 +01:00