Meant for MetaRenderer and everything related that deals with turning
composited frames, or client buffers, into mode set updates. This is
slightly related to the debug topic 'kms' is meant for the KMS details.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
Analogous to `get_image()` this returns a `ClutterContent` for a
given `MetaWindowActor`. This can be used to implement window
effects without a roundtrip from GPU to CPU memory.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1893>
Add a method meta_context_destroy() that both runs dispose and unrefs
the context. Tear down is moved to dispose() so that things owned by the
context are destroyed when calling meta_context_destroy(), or when the
last reference is released.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This object intends to replace the scattered functions that are used to
make up what is effectively a "mutter context". It takes care of the
command line arguments that is now done in main.c, persistant virtual
monitors, and the like.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Users can add option entries, and it'll be part of the configuration
phase.
Create the main group manually to be able to set a user_data pointer;
this will be required to not have to rely on globals when parsing
options using a callback.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This intends to replace the call to `meta_register_with_session()` that
deals with X11 session management, and is called when the user is
"ready". In thet test context, doing that makes no sense, so make it a
no-op.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
The start phase creates the MetaDisplay object, and initializes Wayland, and
creates the main loop.
The run phase runs the main loop and handles returning an error if the
context was terminated with an error.
The terminate phase terminates the main loop, with or without an error.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Configuration is the first step of the lifetime of a context, after
creation; it's here where argc/argv is processed, and it's determined
what kind of compositor, etc, it is going to be.
The tests always run as Wayand compositors, so the configuration is
quite simple, but will involve more steps later on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
It'll be part of and owned by MetaContext, intending to replace
`meta_is_wayland_compositor()`, but place it in a new file for public
enums so that it can be used from wherever.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This type is intended to replace the scattered functions used to
configure how the Mutter compositor is run. It currently doesn't do
anything, and only has a human readable name, intended to be set to e.g.
"GNOME Shell".
It's an abstract type, and is intended to be used via either a future
`MetaContextMain` for real display server use cases, and a
`MetaContextTest` for test cases.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This object takes over the functionality of meta-idle-monitor-dbus.c,
meta-idle-monitor.c and meta-backend.c, all related to higher level
management of idle watches etc.
The idle D-Bus API is changed to be initialized by the backend instead
of MetaDisplay, as it's more of a backend functionality than what
MetaDisplay usually deals with.
It also takes over the work of implementing "core" idle monitors. The
singleton API is replaced with thin wrapper functions on the backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1859>
As documented in g_once_init_enter(): "While @location has a volatile qualifier,
this is a historical artifact and the pointer passed to it should not be
volatile.". And effectively this now warns with modern glibc.
Drop the "volatile" qualifier from these static variables as it's expected.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1785>
We're going to round the workspace backgrounds in the new overview for
gnome-shell 40.
So far corner-rounding was only possible for StWidgets because the
rounded clipping was done using cairo drawing. We now need rounded
clipping for ClutterActors too because backgrounds are drawn using
ClutterActors (or more specifically a ClutterContent). To implement
that, first a ClutterOffscreenEffect subclass together with a fragment
shader from GSK (see gskSetOutputColor() [1] in the GSK GL renderer
code) was investigated, and while that was generic and worked quite
well, it was extremely slow for the case of drawing wallpapers because
of all the FBOs that had to be allocated.
This is the new, more performant approach: Use the same fragment shader,
but perform the rounded clipping right in MetaBackgroundContent while
we're painting the wallpaper. This has almost no performance impact,
with the downside of not being a generic solution.
To allow for rounded clipping not only at the edges of the wallpaper,
but using any given bounding rectangle, the API exposes not only the
radius, but also a bounding rect.
[1] https://gitlab.gnome.org/GNOME/gtk/-/blob/master/gsk/resources/glsl/preamble.fs.glsl
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1717>
Since commit c255031b6d we pass scroll-events through to
the compositor if the window_grab_modifiers are pressed;
in order to allow gnome-shell to check for those events,
expose the struct member as a MetaDisplay property.
Also take the opportunity to pick a more generic name, now
that the modifier is no longer used exclusively for mouse
clicks (unless we maintain the notion of scroll events as
button 4 and 5 "clicks").
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1695>
It's pointless to call into functions that produce information that will
end up nowhere, so lets not. This will generate less angst when doing
more intense data gathering and string generation in debug log calls.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1467
Mutter itself is versioned now, so passing the version information
to the plugin is redunant now: The version is already determined by
linking to a particular API version (gnome-shell) or by installing
to a versioned plugin path (external plugins).
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1473
Instead of having everyone check net.hadess.SensorProxy themselves, have
this all controlled by the MetaOrientationManager, and proxied everywhere
else via a readonly property in org.gnome.Mutter.DisplayConfig.
We want to attach more complex policies here, and it seems better to
centralize the handling of the autorotation feature rather than
implementing policy changes all over the place.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1311
Analogous to `ClutterDrawDebugFlag` but intended for concepts that
are not present in Clutter, such as Wayland/X11 opaque regions.
Also add the first flag for the later.
To set the flag, run:
`Meta.add_debug_paint_flag(Meta.DebugPaintFlag.OPAQUE_REGION)`
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1372
Allowing code from inside mutter to create a child process and
delegate on it some of its tasks is something very useful. This can
be done easily with the g_subprocess and g_subprocess_launcher classes
already available in GLib and GObject.
Unfortunately, although the child process can be a graphical program,
currently it is not possible for the inner code to identify the
windows created by the child in a secure manner (this is: being able
to ensure that a malicious program won't be able to trick the inner
code into thinking it is a child process launched by it).
Under X11 this is not a problem because any program has full control
over their windows, but under Wayland it is a different story: a
program can't neither force their window to be kept at the top (like a
docker program does) or at the bottom (like a program for desktop icons
does), nor hide it from the list of windows. This means that it is not
possible for a "classic", non-priviledged program, to fulfill these
tasks, and it can be done only from code inside mutter (like a
gnome-shell extension).
This is a non desirable situation, because an extension runs in the
same main loop than the whole desktop itself, which means that a
complex extension can need to do too much work inside the main loop,
and freeze the whole desktop for too much time. Also, it is important
to note that javascript doesn't have access to fork(), or threads,
which means that, at most, all the parallel computing that can do is
those available in the _async calls in GLib/GObject.
Also, having to create an extension for any priviledged graphical
element is an stopper for a lot of programmers who already know
GTK+ but doesn't know Clutter.
This patch wants to offer a solution to this problem, by offering a
new class that allows to launch a trusted child process from inside
mutter, and make it to use an specific UNIX socket to communicate
with the compositor. It also allows to check whether an specific
MetaWindow was created by one of this trusted child processes or not.
This allows to create extensions that launch a child process, and
when that process creates a window, the extension can confirm in a
secure way that the window really belongs to that process
launched by it, so it can give to that window "superpowers" like
being kept at the bottom of the desktop, not being listed in the
list of windows or shown in the Activities panel... Also, in future
versions, it could easily implement protocol extensions that only
could be used by these trusted child processes.
Several examples of the usefulness of this are that, with it, it
is possible to write programs that implements:
- desktop icons
- a dock
- a top or bottom bar
...
all in a secure manner, avoiding insecure programs to do the same.
In fact, even if the same code is launched manually, it won't have
those privileges, only the specific process launched from inside
mutter.
Since this is only needed under Wayland, it won't work under X11.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/741
Instead of blindly hoping that `$INCLUDE` contains the parent directory
of `gsettings-desktop-schemas`.
Because `gsettings-desktop-schemas.pc` says:
```
Cflags: -I/SOME/DIRECTORY/gsettings-desktop-schemas
```
Which means to include the version that Meson has configured you need
to drop the directory prefix and only `#include <gdesktop-enums.h>`.
This fixes a build failure with local installs triggered by 775ec67a44
but it's also the right thing to do™.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1370
As explained in the last commit, gnome-shell needs to be able to thaw
window actor updates during its size-change effect is active.
So make meta_window_actor_freeze() and meta_window_actor_thaw() public
API, which will allow the shell to freeze and thaw actor updates itself.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1250
MetaBackgroundActor is still necessary for culling purposes,
but now the actual rendering of the background is delegated
to MetaBackgroundContent, as well as the sizing information.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1302
MetaBackgroundContent is a ClutterContent implementation
that can render a background to any attached actor. Right
now, it preserves all the properties and the rendering
model of MetaBackgroundActor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1302
We don't have enough Xlib code in mutter ...
Joking aside, it can be useful to make the cursor invisible
without hiding it, for example for replacing the actual cursor
with an actor in gnome-shell; the real cursor should still
update the focus surface in that case, and not sneak into
screenshots or -casts.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1244
The shell uses the PID of windows to map them to apps or to find out
which window/app triggered a dialog. It currently fails to do that in
some situations on Wayland, because meta_window_get_pid() only returns a
valid PID for x11 clients.
So use the client PID instead of the X11-exclusive _NET_WM_PID property
to find out the PID of the process that started the window. We can do
that by simply renaming the already existing
meta_window_get_client_pid() API to meta_window_get_pid() and moving
the old API providing the _NET_WM_PID to meta_window_get_netwm_pid().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
Inhibiting remote access means any current remote access session is
terminated, and no new ones can be created, until remote access is
uninhibited. The inhibitation is ref counted, meaning there can be more
than one inhibitor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1212
Since the order of destruction during MetaDisplay tear down is a bit
unordered, there are pieces that try to destruct its compositing
dependent pieces (i.e. queued MetaLater callbacks) after MetaCompositor
has been cleaned up, meaning we need to put some slightly awkward NULL
checks to avoid crashing.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
Better to have the relevant object figure out whether it is a good
position to be unredirectable other than the actor, which should be
responsible for being composited.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
MetaGravity is an enum, where the values match the X11 macros used for
gravity, with the exception that `ForgetGravity` was renamed
`META_GRAVITY_NONE` to have less of a obscure name.
The motivation for this is to rely less on libX11 data types and macros
in generic code.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
The check-alive feature is there for the user to be able to terminate
frozen applications more easily. However, sometimes applications are
implemented in a way where they fail to be reply to ping requests in a
timely manner, resulting in that, to the compositor, they are
indistinguishable from clients that have frozen indefinitely.
When using an application that has these issues, the GUI showed in
response to the failure to respond to ping requests can become annoying,
as it disrupts the visual presentation of the application.
To allow users to work-around these issues, add a setting allowing them
to configure the timeout waited until an application is considered
frozen, or disabling the check completely.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1080
This way, we can simply pop up the Looking Glass and run:
>>> Meta.add_clutter_debug_flags(Clutter.DebugFlag.PICK, 0, 0)
And measure specific actions or events on GNOME Shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/862
Since Clutter's backend relies on MetaBackend now, initialzation has
to go through meta_init(), both in mutter and in gnome-shell.
However the compositor enum and backend gtype used to enforce the
environment used for tests are private, so instead expose a test
initialization function that can be used from both mutter and
gnome-shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/750
This currently uses a hack where it pushes a CoglFramebuffer backed by a
texture to the framebuffer stack, then calls clutter_actor_paint() on
the window actor causing it to render into the framebuffer. This has the
effect that all subsurfaces of a window will be drawn as part of the
window.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/752
Since Clutter's backend relies on MetaBackend now, initialzation has
to go through meta_init(), both in mutter and in gnome-shell.
However the compositor enum and backend gtype used to enforce the
environment used for tests are private, so instead expose a test
initialization function that can be used from both mutter and
gnome-shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/750
meta_shaped_texture_update_area() is a private function that
is exposed in the public headers. It is not used anywhere
outside Mutter, and should really be in the private header.
Move it to the private header.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
Now that MetaShapedTexture is not a ClutterActor anymore, it does
not make sense to make it a MetaCullable semi-implementation. This
is, naturally, a responsibility of MetaSurfaceActor, since now
MetaShapedTexture is a ClutterContent and as such, it only cares
about what to draw.
Move the MetaCullable implementation of MetaShapedTexture to
MetaSurfaceActor.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
MetaWindowActor is the compositor-side representative of a
MetaWindow. Specifically it represents the geometry of the
window under Clutter scene graph. MetaWindowActors are backed
by MetaSurfaceActors, that represent the windowing system's
surfaces themselves. Naturally, these surfaces have textures
with the pixel content of the clients associated with them.
These textures are represented by MetaShapedTexture.
MetaShapedTextures are currently implemented as ClutterActor
subclasses that override the paint function to paint the
textures it holds.
Conceptually, however, Clutter has an abstraction layer for
contents of actors: ClutterContent. Which MetaShapedTexture
fits nicely, in fact.
Make MetaShapedTexture a ClutterContent implementation. This
forces a few changes in the stack:
* MetaShapedTexture now handles buffer scale.
* We now paint into ClutterPaintNode instead of the direct
framebuffer.
* Various pieces of Wayland code now use MetaSurfaceActor
instead of MetaShapedTexture.
* MetaSurfaceActorWayland doesn't override size negotiation
vfuncs anymore
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
A base type shouldn't know about sub types, so let MetaDisplay make
the correct choice of what type of MetaCompositor it should create. No
other semantical changes introduced.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/727
Introduce MetaCompositorX11, dealing with being a X11 compositor, and
MetaCompositorServer, being a compositor while also being the display
server itself, e.g. a Wayland display server.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/727
On X11, mutter needs to keep a grab on the locate-pointer key to be able
to trigger the functionality time the corresponding key combo is
pressed.
However, doing so may have side effects on other X11 clients that would
want to have a grab on the same key.
Make sure we only actually grab the key combo for "locate-pointer" only
when the feature is actually enabled, so that having the locate pointer
feature turned off (the default) would not cause side effects on other
X11 clients that might want to use the same key for their own use.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/647
Some special modifiers (typically "Control_L" used for locate-pointer in
mutter/gnome-shell or "Super_L" for overlay) must be handled separately
from the rest of the key bindings.
Add a new flag `META_KEY_BINDING_NO_AUTO_GRAB` so we can tell when
dealing with that special keybinding which should not be grabbed
automatically like the rest of the keybindings, and skip those when
changing the grabs of all keybindings.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/685
Allow checking whether the pointer is visible without accessing the
trackers internal is_showing property. While we don't need this just yet
for reading the visibility inside meta-wayland-pointer, it's useful when
implementing the logic to remove Clutter's focus when the cursor goes
hidden later.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/448
The way code was structured made it easy to misunderstand things as the
surface actor of a window actor could change over time. So is not the
case, however, the intention of the corresponding "update" function was
so that a surface actor could be assigned to a window actor as soon as
the X11 window was associated with its corresponding wl_surface, if the
window in question came from Xwayland.
Restructure the code and internal API a bit to make it clear that a
window actor only once gets a surface actor assigned to it, and that it
after that point never changes.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/659
In all places (including src/wayland) we tap into meta_x11_display* focus
API, which then calls meta_display* API. This relation is backwards, so
rework input focus management so it's the other way around.
We now have high-level meta_display_(un)set_input_focus functions, which
perform the backend-independent maintenance, and calls into the X11
functions where relevant. These functions are what callers should use.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
This function was added for historic reasons, before that we had GSlist's
free_full function.
Since this can be now easily implemented with a function call and an explicit
GDestroyFunc, while no known dependency uses it let's move to use
g_slist_free_func instead.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/57