Just like we swap the x and y resolution of the monitor modes when
the panel-orientation requires 90 or 270 degree rotation to compensate,
we should do the same for the width and height in mm of the monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
If a monitor's max resolution is a portrait resolution, then assume it is
a native portrait monitor and add portrait versions of the common modes.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
Even if the logical_monitor config does not have an active transform,
we might still be doing a transform under the hood to compensate for
panel-orientation. Check for this and fall back to the sw cursor if this
is the case.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
If a LCD panel has a non normal orientation (mounted upside-down or 90
degrees rotated) then the kernel will report touchscreen coordinates with
the origin matching the native (e.g. upside down) coordinates of the panel.
Since we transparently rotate the image on the panel to correct for the
non normal panel-orientation, we must apply the same transform to input
coordinates to keep the aligned.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
Some x86 clamshell design devices use portrait tablet LCD panels while
they should use a landscape panel, resoluting in a 90 degree rotated
picture.
Newer kernels detect this and rotate the fb console in software to
compensate. These kernels also export their knowledge of the LCD panel
orientation vs the casing in a "panel orientation" drm_connector property.
This commit adds support to mutter for reading the "panel orientation"
and transparently (from a mutter consumer's pov) fixing this by applying
a (hidden) rotation transform to compensate for the panel orientation.
Related: https://bugs.freedesktop.org/show_bug.cgi?id=94894https://bugzilla.gnome.org/show_bug.cgi?id=782294
If input happens to be grabbed somewhere along the shell, and ungrabbed
while a touch operation is ongoing, the wayland bits will happily start
sending wl_touch.update events from an undeterminate point, without
clients having ever received wl_touch.down for that id.
Consider those touches grabbed for the entirety of their lifetime, if
wl_touch.down wasn't received by the client, no other events will.
https://bugzilla.gnome.org/show_bug.cgi?id=776220
When a Wayland client issues a shortcut inhibit request which is granted
by the user, the Super key should be passed to the surface instead of
being handled by the compositor.
https://bugzilla.gnome.org/show_bug.cgi?id=790627
On VT switch, the xkb state layout index is lost and reset to the first
group, so if the first layout is not the last one being used, the xkb
state used in both meta-wayland-keyboard.c and clutter/evdev will be
desynchronized with the keyboard source indicator in the gnome-shell UI.
Save the effective layout chosen along with the seat so it can be
restored when reclaiming devices.
Use the saved layout index from the clutter/evdev's seat to restore the
layout in meta-wayland-keyboard, so that switching VT doesn't reset the
layout and causes further discrepancies with the layout indicator in the
gnome-shell UI.
https://bugzilla.gnome.org/show_bug.cgi?id=791383
The reason why multiple keycodes could be mapped to a single keysym was
to support having both KEY_FAVORITES and KEY_BOOKMARK map to
XF86Favorites. However, iterating through all layout levels adding all
key codes has severe consequences on layouts with levels that map
things like numbers and arrow. The result is that keybindings that
should only have been added for keycodes from the first level, are
replaced by some unexpected keycode where the same keysym was found on
another level.
An example of this is the up-arrow key and l symbol. Normally you'd find
both the up-arrow symbol and the l symbol on the first level and be done
with it. However, on the German Neo-2 layout, layout level 4 maps the
KEY_E to the l symbol, while layout level 4 maps KEY_E to up-arrow.
Which ever gets to take priority is arbitrary, but for this particular
case KEY_E incorrectly mapped to up-arrow instead of the l symbol,
causing the keyboard shortcut Super+l, which would normally lock the
screen, to trigger the workspace-up (Super+up-arrow) key binding.
https://bugzilla.gnome.org/show_bug.cgi?id=789300
This protocol is limited to Xwayland only and is not visible/usable by
any other client.
Mutter uses the following mechanisms to determine if an X11 client
should be granted a grab:
- is "xwayland-allow-grabs" set?
- if set, is the client blacklisted?
- otherwise, has the client set the X11 window property
_XWAYLAND_MAY_GRAB_KEYBOARD on the window using a client message?
- if not, is it a client white-listed either via the default system
list or the settings "xwayland-grab-access-rules"?
https://bugzilla.gnome.org/show_bug.cgi?id=783342
Add a new client message "_XWAYLAND_MAY_GRAB_KEYBOARD" that X11 clients
can use to tell mutter this is a well behaving X11 client so it may
grant the keyboard grabs when requested.
An X11 client wishing to be granted Xwayland grabs by gnome-shell/mutter
must send a ClientMessage to the root window with:
- message_type set to "_XWAYLAND_MAY_GRAB_KEYBOARD"
- window set to the xid of the window on which the grab is to be issued
- data.l[0] to a non-zero value
Note: Sending this client message when running a plain native X11
environment would have no effect.
https://bugzilla.gnome.org/show_bug.cgi?id=783342
MetaWindowXwayland derives from MetaWindowX11 to allow for some Xwayland
specific vfunc that wouldn't apply to plain X11 windows, such as
shortcut inhibit routines.
https://bugzilla.gnome.org/show_bug.cgi?id=783342
The xdg-output protocol aims at describing outputs in way which is
more in line with the concept of an output on desktop oriented systems.
For now it just features the position and logical size which describe
the output position and size in the global compositor space.
This is however much useful for Xwayland to advertise the output size
and position to X11 clients which need this to configure their surfaces
in the global compositor space as the compositor may apply a different
scale from what is advertised by the output scaling property (to achieve
fractional scaling, for example).
This was added in wayland-protocols 1.10.
https://bugzilla.gnome.org/show_bug.cgi?id=787363
When the top window actor is destroyed, we need to make sure that
all its references are removed or it could be picked again in next
windows sync, causing crashes.
Since the window might or might not be destroyed when removed (depending
weather animations are in progress over it or not), it's just safer
to wait it to be destroyed before cleaning up any of its reference.
https://bugzilla.gnome.org/show_bug.cgi?id=791006
Changing the test monitor managers ability to rotate CRTCs in one test
affected the next test. Avoid leaking such state by resetting it before
each test. To continue passing, some tests needed to be updated
regarding to still pass.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
Add a test case that checks that we don't try to revert to a
laptop-panel-only configuration after closing the lid after an external
monitor is connected.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
We only counted configured monitors and whether the config was
applicable (could be assigned), howeverwe didn't include disabled
monitors when comparing. This could caused incorrect configurations to
be applied when trying to use the previous configuration.
One scenario where this happened was one a system with one laptop
screen and one external monitor that was hot plugged some point after
start up. When the laptop lid was closed, the 'previous configuration'
being the configuration where only the laptop panel was enabled, passed
'is-complete' check as the number of configured monitors were correct,
and the configuration was applicable.
Avoid this issue by simply comparing the configuration key of the
previous configuration and the configuration key of the current state.
This correctly identifies a laptop panel with the lid closed as
inaccessible, thus doesn't incorrectly revert to the previous
configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
When deriving the list of disabled monitors when creating new monitors
configs, don't include the laptop panel if the lid is currently closed,
as we consider the laptop panel nonexistent when the laptop lid is
closed when it comes to configuration.
The laptop panel connector(s) will either way be appropriately disabled
anyway, as the field listing disabled monitors in the configuration do
not affect actual CRTC/connector assignments.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
If a parent doesn't have a window, it means it could have been
dismissed (for example due to a input serial race), but the more recent
popup might win the input serial race and try to map anyway. This would
result in a crash later on when trying to process the placement rule,
as the parent already has no window.
https://bugzilla.gnome.org/show_bug.cgi?id=790358
Move the top-most-popup correctness check to the finish_popup_setup()
function after checking the serial. If we pass the serial check, we
should have reached a state that if there are any popups they should be
the one from the same client.
Also avoid failing a client that correctly set the top-most popup at map
time, but where at the time of processing the top most popup have
already been dismissed by the compositor for some arbitrary reason.
https://bugzilla.gnome.org/show_bug.cgi?id=790358
Commit b1a0bf891 broke the previous logic that we would only fallback
to the root cursor if 1) windows are not interactable or 2) no window
cursor is currently set (i.e. not hovering over any window). Now it
will set up the root cursor if it's NULL, which breaks clients
explicitly setting an invisible cursor. This commit restaurates the
previous behavior.
https://bugzilla.gnome.org/show_bug.cgi?id=754806
This function is supposedly not failable, so just move the theme_dirty
flag clearing to the beginning of the function. Protects against cases
where requesting a cursor image may result in it being loaded and set
as a texture, which emits ::texture-changed, which may end up requesting
the cursor image again.
https://bugzilla.gnome.org/show_bug.cgi?id=754806
As wayland implements the cursor role, it consists of a persistent
MetaCursorSprite that gets the backing texture changed. This is
inconvenient for the places using MetaCursorTracker to track cursor
changes, as they actually track MetaCursorSprites.
This signal will be used to trigger emission of
MetaCursorTracker::cursor-changed, which will make users able to
update accordingly.
https://bugzilla.gnome.org/show_bug.cgi?id=754806
Just like X11/XFixes behaves, the current cursor is not affected
by its visibility, so it can be queried while invisible (possibly
to be replaced).
For this, keep an extra effective_cursor pointer that will be
either equal to displayed_cursor (maybe a bit of a misnomer now)
or NULL if the cursor is invisible. The MetaCursorRenderer
management is tied to the former, and the ::cursor-changed signal
emission to the latter.
https://bugzilla.gnome.org/show_bug.cgi?id=754806
We must emit ::dnd-leave to pair the ::dnd-enter that shall be
emitted whenever the plugin grab begins, otherwise we leave
listeners unable to clean up if the plugin begins and ends a
grab while there is an ongoing DnD operation.
https://bugzilla.gnome.org/show_bug.cgi?id=784545
MetaWaylandKeyboard maintains its own xkb_state used to update Wayland
clients.
Add the necessary hooks to make sure the sticky keys modifier masks set
in clutter-evdev are also applied in MetaWaylandKeyboard's xkb_state so
that Wayland clients also benefit from sticky keys.
https://bugzilla.gnome.org/show_bug.cgi?id=788564
We tried to get the geometry scale, which may depend on the main
logical monitor assigned to the window. To avoid dereferencing a NULL
logical monitor when headless, instead assume the geometry scale is 1.
https://bugzilla.gnome.org/show_bug.cgi?id=788764
Proprietary drivers such as ARM Mali export EGL_KHR_platform_gbm instead
of EGL_MESA_platform_gbm. As such, GBM platform check should be done for
both MESA and non-MESA drivers.
https://bugzilla.gnome.org/show_bug.cgi?id=780668
Bluetooth mouse usually goes in sleep state after a timeout, when that
happen the mouse is disconnected and on_device_removed function is
called. Before the patch if a touch device is available the
on_device_removed function hide the cursor. The issue is that the cursor
does not reappear once the bluetooth mouse is reconnected because
MetaBackend::current_device_id is not invalidated when on_device_removed
was called.
The patch set MetaBackend::current_device_id to 0 if the current device
is removed. This will make update_last_device to be triggered as soon as
another input device is used or the bluetooth mouse reconnect, as
consequence that the cursor reappear. The id 0 is never given to devices
and can safely used as undefine id.
https://bugzilla.gnome.org/show_bug.cgi?id=761067
The DRM properties container must be destroyed with
drmModeFreeObjectProperties, and the connectors must be freed on every
caller. Also make it sure that gbm_device structs are destroyed with the
MetaRendererNativeGpuData that owns them.
https://bugzilla.gnome.org/show_bug.cgi?id=789984
This is not a leak per se, but it seems too easy to make valgrind
SIGSEGV due to MetaBackground disconnecting signals from an already
destroyed MetaScreen when trying to SIGTERM gnome-shell. Keeping a
reference fixes this.
https://bugzilla.gnome.org/show_bug.cgi?id=789984
The layout group determines what actual keyboard layout in the keymap
to use when translating modifier state and key codes to key syms.
When changing a keymap to another, the layout groups has no relation to
the layout groups in the old keymap, thus there is no reason to
transfer it to the new state.
This fixes an issue where the xkb state in meta-wayland-keyboard.c got
desynchronized with the xkb state in clutter-device-manager-evdev.c.
https://bugzilla.gnome.org/show_bug.cgi?id=789300
On some architectures, including both GLES3/gl3.h GL/gl.h will cause
compilation issues due to incompatible type definitions. To avoid
running into that issue while building on other architectures, make
sure we haven't included GL/gl.h by accident.
https://bugzilla.gnome.org/show_bug.cgi?id=788695
The handlers depend on a role being assigned. Destroying the window
causes it to become unmapped, which would sometimes trigger one of the
handlers, resulting in an is-assigned assert hitting in one of the
handlers. Avoid this by disconnecting the handlers earlier, so that
there is no risk that any them being triggered before the role is
assigned.
https://bugzilla.gnome.org/show_bug.cgi?id=789552
In the unlikely case that a surface is moved by the compositor while
holding a pointer confinement, we also need to update the pointer
position when the surface actor gets moved.
https://bugzilla.gnome.org/show_bug.cgi?id=782344
Both notify::position on the surface actor and position-changed on
MetaWindow are listened to, in order to trigger wl_output updates for
wl_surfaces whenever the surfaces move across them.
Both signals are necessary in order to cater for toplevel and subsurface
relocations (Because it's the parent window actor what changes position
in this last case).
Also, shuffle signal disconnection, so each signal goes away with
the object reference held by MetaWaylandSurface.
https://bugzilla.gnome.org/show_bug.cgi?id=782344
The org.gnome.desktop.peripherals.trackball.scroll-wheel-emulation-button
setting contains buttons X11-style. Work out the BTN evcode that applies
to it when applying the setting on the libinput device.
https://bugzilla.gnome.org/show_bug.cgi?id=787804
It looks that there are some extensions that run a Mainloop on startup,
causing to dispatch a clutter paint before the compositor is even available.
In such scenario a MetaWindow could try to start a simple effect
using a compositor plugin which is not there yet.
Then in order to catch these bugs we can now assert that the expected
conditions are valid, so that gnome-shell will provide a dumpstack to
debug the real offending JS code.
https://bugzilla.gnome.org/show_bug.cgi?id=789223
There are cases when no compositor is available (yet) but a MetaWindow tries
to start a simple effect using a compositor plugin which is not available.
In that case we should just ignore any request and protect ourselves from
crashes.
https://bugzilla.gnome.org/show_bug.cgi?id=789223
This function might be called by components with invalid plugin manager
(as it might happen to MetaWindow when the compositor isn't initialized
properly), so we need to protect ourselves from crashes.
https://bugzilla.gnome.org/show_bug.cgi?id=789223
Check that if there are multiple modes with the same ID (resolution,
refresh rate and handled flags) we correctly add the preferred mode to
the list of monitor modes.
https://bugzilla.gnome.org/show_bug.cgi?id=789153
When generating MetaMonitorMode's, prefer CRTC modes that has the same
set of flags as the preferred mode. This not only is probably a better
set of configurable modes, but it'll guarantee that the preferred mode
is added.
This fixes a crash when the preferred mode was not the first mode with
the same resolution, refresh rate and set of handled modes.
https://bugzilla.gnome.org/show_bug.cgi?id=789153
Under X11 we can only ever have the same scale configured on all
monitors. In order to use e.g. scale 2 when there is a HiDPI monitor
connected, we must not disallow it because there is a monitor that does
not support scale 2. Thus we must show the same scale for every monitor
and monitor mode, even though it might result in a bad experience.
Do this by iterating through all the monitors adding all supported
scales by the preferred mode, combining all the supported scales. This
supported scales list is then used for all monitor and modes no matter
what.
https://bugzilla.gnome.org/show_bug.cgi?id=788901
When determining whether we should unredirect a window or not, ignore
offscreen windows, and just check the top most visible window.
Previously this was not an issue, but since 'stack-tracker: Keep
override redirect windows on top' we started sorting the UI frames
window, which is an offscreen override redirect window, on top, causing
the unredirect checking code to always check whether to unredirect the
UI frames window. This effectively disabled the compositor bypass
functionality.
https://bugzilla.gnome.org/show_bug.cgi?id=788493
Adding an internal signal and use it to update the internal state before
emitting "monitors-changed" which will be repeated by the screen to the world.
https://bugzilla.gnome.org/show_bug.cgi?id=788860
Don't use MAX(logical monitor scales) to determine the UI scaling
factor, just use the primary logical monitor. That's where the shell UI
will most likely be.
https://bugzilla.gnome.org/show_bug.cgi?id=788820
When we received two hot plug events that both resulted in headless
configuration, we tried to find a new window monitor given the old.
That resulted in a null pointer dereference; avoid that by only trying
to find the same monitor if there was an old one.
https://bugzilla.gnome.org/show_bug.cgi?id=788607
On hybrid GPU systems, hardware cursors needs to be realized on all the
GPUs, as scanout cursor planes cannot be shared. Do this by moving gbm
buffer and drm buffer ID management to a per GPU struct, realizing a
cursor on each GPU when previously only realized on the primary GPU.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
A hybrid GPU system is a system where more than one GPU is connected to
connectors. A common configuration is having a integrated GPU (iGPU)
connected to a laptop panel, and a dedicated GPU (dGPU) connected to
one or more external connector (such as HDMI).
This commit adds support for rendering the compositor stage using the
iGPU, then copying the framebuffer content onto a secondary framebuffer
that will be page flipped on the CRTC of the dGPU.
This can work in two different ways: GPU accelerated using Open GL ES
3, or CPU unaccelerated.
When supported, GPU accelerated copying works by exporting the iGPU
onscreen framebuffer as a DMA-BUF, importing it as a texture on a
separate dGPU EGL context, then using glBlitFramebuffer(), blitting it
onto a framebuffer on the dGPU that can then be page flipped on the dGPU
CRTC.
When GPU acceleration is not available, copying works by creating two
dumb buffers, and each frame glReadPixels() from the iGPU EGL render
context directly into the dumb buffer. The dumb buffer is then page
flipped on the dGPU CRTC.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Add helper functions and macros for managing and drawing OpenGL ES 3.
It will be used for blitting framebuffers between multiple GPUs in
hybrid GPU systems.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Eventually, we'll render buffers without using Cogl, and for this we
need to be able to do things like creating, destroying and changing the
context, as well as swapping buffers.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
First find the primary GPU and open it. Then go through all other
discovered GPUs with connectors and add those too. MetaRendererNative
still fails to initialize when multiple added GPUs and
MetaCursorRendererNative still always falls back on OpenGL based cursor
rendering when there are multiple GPUs.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
When creating a renderer with a custom winsys (which is always how
mutter uses cogl) make it possible to pass a user data with the winsys.
Still unused.
https://bugzilla.gnome.org/show_bug.cgi?id=785381