Code underneath seems to handle errors properly, or be x11-agnostic
entirely, this is apparently here to save a few XSync()s on X11. Just
drop this windowing dependent bit to make things cleaner.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
In all places (including src/wayland) we tap into meta_x11_display* focus
API, which then calls meta_display* API. This relation is backwards, so
rework input focus management so it's the other way around.
We now have high-level meta_display_(un)set_input_focus functions, which
perform the backend-independent maintenance, and calls into the X11
functions where relevant. These functions are what callers should use.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
When we update the main monitor, there is a rule that makes it so that
popup windows use the same main monitor as their parent. In the commit
f4d07caa38 the call that updates and
fetches the main monitor of the toplevel accidentally changed to update
from itself, causing a indefinite recursion eventually resulting in a
crash.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/279
Commit a3da4b8d5b changed updating of
window monitors to always use take affect when it was done from a
non-user operation. This could cause feed back loops when a non-user
driven operation would trigger the changing of a monitor, which itself
would trigger changing of the monitor again due to a window scale
change.
The reason for the change, was that when the window monitor changed due
to a hot plug, if it didn't actually change, eventually the window
monitor pointer would be pointing to freed memory.
Instead of force updating the monitor on all non-user operations, just
do it on hot plugs. This allows for the feedback loop preventing logic
to still do what its supposed to do, without risking dangling pointers
on hot plugs.
Related: https://gitlab.gnome.org/GNOME/mutter/issues/189
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/192
The bool determines whether the call was directly from a user operation
or not. To add more state into the call without having to add more
boolenas, change the boolean to a flag (so far with 'none' and 'user-op'
as possible values). No functional changes were made.
https://gitlab.gnome.org/GNOME/mutter/issues/192
meta_window_wayland_update_main_monitor() would skip the monitor update
if the difference in scale between the old and the new monitor would
cause another monitor change.
While this is suitable when the monitor change results from a user
interactively moving the surface between monitors of different scales,
this can leave dangling pointers to freed monitors when this is
triggered by a change of monitor configuration.
Make sure we update the monitor unconditionally if not from a user
operation.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/189
They are X11 specific functions, used for X11 code. They have been
improved per jadahl's suggestion to use gdk_x11_lookup_xdisplay and
gdk_x11_display_error_trap_* functions, instead of current code.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
This will be used by the next commit to determine when a window
geometry change should be ignored or not. Normally, it would be
enough to just check if the position and sizes changed.
The position, in this case, is relative to the client buffer, not
the global position. But because it is not global, there is one,
admitedly unlikely, situation where the window state is updated
while the client size and relative positions don't change.
One can trigger this by e.g. tiling the window to the half-left of
the monitor, then immediately tile it to half-right. In this case,
the window didn't change, just it's state, but nonetheless we need
to notify the compositor and run the full move/resize routines.
When that case happens, though, the MetaWindowWayland is tracking
the pending state change or a move. And this is what we need to
expose.
https://bugzilla.gnome.org/show_bug.cgi?id=780292
Issue: #78
In the old, synchronous X.org world, we could assume that
a state change always meant a synchronizing the window
geometry right after. After firing an operation that
would change the window state, such as maximizing or
tiling the window,
With Wayland, however, this is not valid anymore, since
Wayland is asynchronous. In this scenario, we call
meta_window_move_resize_internal() twice: when the user
executes an state-changing operation, and when the server
ACKs this operation. This breaks the previous assumptions,
and as a consequence, it breaks the GNOME Shell animations
in Wayland.
The solution is giving the MetaWindow control over the time
when the window geometry is synchronized with the compositor.
That is done by introducing a new result flag. Wayland asks
for a compositor sync after receiving an ACK from the server,
while X11 asks for it right away.
Fixes#78
Make the Wayland objects push the state relevant to their role to the
MetaSurfaceActor instead of MetaSurfaceActorWayland pulling the state
from the associated surface.
This makes the relationship between the actor and the objects that
constructs it more clear; the actor is a drawable that the protocol
objects control, not the other way around.
This will make it easier to "detach" a surface actor from a surface,
which is necessary when unmapping a window while the underlying surface
is yet to be destroyed and potentially reused.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/5https://bugzilla.gnome.org/show_bug.cgi?id=791938
When maximizing a window, the previous location is saved so that
un-maximize would restore the same original window location.
However, if a Wayland client starts with a window maximized, the
previous location will be 0x0, so if we have to force placement in
xdg_toplevel_set_maximized(), we should update the location as well so
that the window is placed on the right monitor when un-maximizing.
For that purpose, add a new flag to force the update of the window
location, and use that flag from xdg_toplevel_set_maximized().
https://bugzilla.gnome.org/show_bug.cgi?id=783901
When closing a window and showing a new one, the new one may not be
granted input focus until it gets a buffer on Wayland.
If another window is chosen to receive focus and raised on top of stack,
the newly mapped window is focused but placed underneath that other
window.
Meaning that for Wayland surfaces, we need to defer adding the window to
the stack until we actually get to show it, once we have a buffer
attached.
Rather that checking the windowing backend prior to decide if a window
is stackable or not, introduce a new vfunc is_stackable() which tells
if a window should be added to the stack regardless of the underlying
windowing system.
Also add meta_window_is_in_stack() API rather than checking the stack
position directly (replacing the define WINDOW_IN_STACK only available
in stack.c) and remove a window from the stack only if it is present
in the stack, so that the test in meta_stack_remote() becomes
irrelevant.
https://bugzilla.gnome.org/show_bug.cgi?id=780820
We tried to get the geometry scale, which may depend on the main
logical monitor assigned to the window. To avoid dereferencing a NULL
logical monitor when headless, instead assume the geometry scale is 1.
https://bugzilla.gnome.org/show_bug.cgi?id=788764
This avoids updating state (such as position, size etc) when going
headless. Eventually, when non-headless, things will be updated again,
and not until then will we be able to update to a valid state.
https://bugzilla.gnome.org/show_bug.cgi?id=730551
Add a mechanism to MetaWaylandSurface that inhibits compositor's own
shortcuts when the surface has input focus, so that clients can receive
all key events regardless of the compositor own shortcuts.
This will help with implementing "fake" active grabs in Wayland and
XWayland clients.
https://bugzilla.gnome.org/show_bug.cgi?id=783342
When updating the main monitor, make sure to update the toplevel main
monitor before trying to use that as the main monitor for non-toplevel
windows (such as popups). Without this, when the main monitor is
updated as a side effect to monitors being changed (for example due to
a hot plug event, or coming back from being suspended) the
main monitor pointer may, after 'monitors-changed' has completed, point to
freed memory resulting in undefined behaviour.
https://bugzilla.gnome.org/show_bug.cgi?id=784867
This commit adds support for rendering onto enlarged per logical
monitor framebuffers, using the scaled clutter stage views, for HiDPI
enabled logical monitors.
This works by scaling the mode of the monitors in a logical monitors by
the scale, no longer relying on scaling the window actors and window
geometry for making windows have the correct size on HiDPI monitors.
It is disabled by default, as in automatically created configurations
will still use the old mode. This is partly because Xwayland clients
will not yet work good enough to make it feasible.
To enable, add the 'scale-monitor-framebuffer' keyword to the
org.gnome.mutter.experimental-features gsettings array.
It is still possible to specify the mode via the new D-Bus API, which
has been adapted.
The adaptations to the D-Bus API means the caller need to be aware of
how to position logical monitors on the stage grid. This depends on the
'layout-mode' property that is used (see the DisplayConfig D-Bus
documentation).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Move the last piece of monitor grid getter API to the monitor manager
away from MetaScreen. The public facing API are still there, but are
thin wrappers around the MetaMonitorManager API.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Turning a rectangle into a logical monitor also has nothing to do with
the screen (MetaScreen) so move it to MetaMonitorManager which has that
information.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation for further refactorizations, rename the MetaMonitorInfo
struct to MetaLogicalMonitor. Eventually, part of MetaLogicalMonitor
will be split into a MetaMonitor type.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Commit 4295fdb892 made us skip focusing
all xdg_popups instead of just non-grabbing ones as intended. This
means that when unmanaging a window we might select a xdg_popup window
to focus (in meta_stack_get_default_focus_window() ) but then since we
don't actually focus it we go on unmanaging the focused window which
triggers an assertion, as it should.
To avoid this and still fixing bug 771694 we can make use of the
MetaWindow->input property for non-grabbing xdg_popup windows since
their semantics, in this regard, are the same as no input X11 windows.
This way, when unmanaging a focused window while a xdg_popup is up,
we'll either give focus to the xdg_popup or not select the popup at
all to be focused if it's non-grabbing.
https://bugzilla.gnome.org/show_bug.cgi?id=775986
This reverts commit 989ec7fc60.
We now rely on accurately knowing if a window moved and/or resized in
meta_window_move_resize_internal() so the wayland implementation can't
lie any longer.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
The keyboard focus semantics for non-grabbing xdg_shell v6 popups is
pretty undefined.
Same applies for subsurfaces, but in practice, subsurfaces never receive
keyboard focus, so it makes sense to do the same for non-grabbing
popups.
https://bugzilla.gnome.org/show_bug.cgi?id=773210
Directly set the monitor of the toplevel window for the popup to avoid
the change not being applied due to later constraints calculation.
Signed-off-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk>
https://bugzilla.gnome.org/show_bug.cgi?id=771841
Always use the monitor of the toplevel surface's window, so that the
popup menu and the parent will always have the same scale. This fixes
the dimensions sent in the xdg_popup configure event.
https://bugzilla.gnome.org/show_bug.cgi?id=771841
In order to kill a window, on both X11 and wayland we first try to
kill(3) the corresponding process, so we can add the newly added
get_client_pid() method to share that code.
https://bugzilla.gnome.org/show_bug.cgi?id=772613
It is often useful to identify the client process that created
a particular window, however the existing meta_window_get_pid()
method relies on _NET_WM_PID, which is only available on X11 and
depends on applications to set it correctly (which may not even
be possible when the app runs in its own PID namespace as Flatpak
apps do). So add a get_client_pid() method that uses windowing
system facilities to resolve the PID associated with a particular
window.
https://bugzilla.gnome.org/show_bug.cgi?id=772613
Implement min/max size request from xdg-shell-v6 and plug it into the
existing code so that windows with fixed size cannot be tiled/maximized
in Wayland just like in X11.
Bugzilla: https://bugzilla.gnome.org/show_bug.cgi?id=770226
Windows from Xwayland still needs to use the Wayland path, but is
represented an MetaWindowX11, thus the abstraction introduced in
"window: Make meta_window_has_pointer() per protocol implemented"
is wrong. Lets turn back time, and reconsider how this can be
abstracted more correctly in the future.
This reverts commit 9fb891d216.
Add support for assigning a window a custom window placement rule used
for calculating the initial window position as well as defining how a
window is constrained.
The custom rule is a declarative rule which defines a set of parameters
which the placing algorithm and constrain algorithm uses for
calculating the position of a window. It is meant to be used to
implement positioning of menus and other popup windows created via
Wayland.
A custom placement rule replaces any other placement or constraint
rule.
https://bugzilla.gnome.org/show_bug.cgi?id=769936
We only use a handful of the attributes set, so lets stop pretending
that things are initialized for a reason. Eventually we should stop
using XWindowAttributes in the generic MetaWindow creation path.
https://bugzilla.gnome.org/show_bug.cgi?id=769070
The result flag needs to be marked as moved even for pending moves,
otherwise the window's unconstrained_rect doesn't get updated in
meta_window_move_resize_internal() and the anchor grab is wrong.
https://bugzilla.gnome.org/show_bug.cgi?id=764180
The X11 backend uses EWMH's _NET_WM_PID to get the PID of an offending
client and kill its PID to force the client to terminate.
The Wayland backend is using a Wayland protocol error, but if the client
is hung, that will not be sufficient to kill the client.
Retrieve the client PID under Wayland using the Wayland client API
wl_client_get_credentials() and kill() the client the same way the X11
backend does.
https://bugzilla.gnome.org/show_bug.cgi?id=767464
If we try to send notify event (either from surface_state_changed()
or from meta_window_wayland_move_resize_internal()),
we will crash, because we don't have a sufrace anymore.
There's no reason why to resize the window that is being
unmanaged anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=751847
Move xdg_shell related functionality to a new meta-wayland-xdg-shell.c
and wl_shell related functionality to a new meta-wayland-wl-shell.c,
and adapt role object tree.
Common functionality related to the surface being drawn as a
MetaSurfaceActor was moved to a MetaWaylandSurfaceRoleActorSurface role.
The subsurface role GObject is made to inherit the actor surface GObject.
Shell surface hooks (configure, ping, close, popup done) were added to
a MetaWaylandSurfaceRoleShellSurface GObject which inherits the
surface actor role GObject.
The shell surface roles (xdg_surface, xdg_popup, wl_shell_surface) are
made to inherit the shell surface GObject and implement the relevant
API.
https://bugzilla.gnome.org/show_bug.cgi?id=757623https://bugzilla.gnome.org/show_bug.cgi?id=763431
Instead of having MetaWindowWayland having hooks into pointer
constraints subsystem, have the pointer constraints subsystem listen
for the signal itself and enable/disable itself.
https://bugzilla.gnome.org/show_bug.cgi?id=762661
The wp_pointer_constraints protocol is a protocol which enables clients
to manipulate the behavior of the pointer cursor associated with a seat.
Currently available constraints are locking the pointer to a static
position, and confining the pointer to a given region.
Currently locking is fully implemented, and confining is implemented for
rectangular confinement regions.
What else is lacking is less troublesome semantics for enabling the lock
or confinement; currently the only requirement implemented is that the
window that appears focused is the one that may aquire the lock.
This means that a pointer could be 'stolen' by creating a new window that
receives active focus, or when using focus-follows-mouse, a pointer
passes a window that has requested a lock. This semantics can be changed
and the protocol itself allows any semantics as seems fit.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
The saved rect is used to restore a saved window size. We need to
update this when the window is moved to a monitor with different scale,
so that if we unmaximize a window which was moved to a different
monitor while maximized (for example when unplugged) will restore to
the correct size.
https://bugzilla.gnome.org/show_bug.cgi?id=755097
When a window is moved across monitors with different scales, its
rectangle is scaled accordingly. We also need to scale the
unconstrained_rect rectangle, so that moving a window via
meta_window_move_resize() which uses the unconstrained_rect.
https://bugzilla.gnome.org/show_bug.cgi?id=755097
Make a surface roles into objects with vfuncs for things where there
before was a big switch statement. The declaration and definition
boilerplate is hidden behind C macros.
https://bugzilla.gnome.org/show_bug.cgi?id=744932
When placing a popup and the legacy transient wl_shell_surface surfaces,
take the current scale of the window into account. This commit doesn't
fix relative positioning in case a window scale would change, but since
the use case for relative positioning is mostly popups, which would be
dismissed before the parent window would be moved, it should not be that
much of a problem.
https://bugzilla.gnome.org/show_bug.cgi?id=744934
Since we scale surface actors given what main output their toplevel
window is on, also scale the window geometry coordinates and sizes
(window->rect size and window->custom_frame_extents.top/left) in order
to make the window geometry represent what is being rendered on the
stage.
https://bugzilla.gnome.org/show_bug.cgi?id=744934
Tracking back from the monitor to the output every time we need to
figure out the scale of a window on a monitor is inconvenient, so
propagate the scale from the output to the monitor it is associated
with.
https://bugzilla.gnome.org/show_bug.cgi?id=744934