It is already handled by the monitor-updated-internal signal handler in
meta-cursor-renderer-native.c, which will always be called indirectly
by resuming the monitor manager.
While at it, remove a useless comment.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Call it meta_cursor_renderer_update_cursor. This avoids confusing it
with the update_cursor MetaCursorRendererClass vfunc when navigating
the file.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It knows better when it's needed. For now, just do it just as before,
before drawing. Eventually, we can conditionalize where to realize
depending on the cursor sprite position.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Use a common entry point into the cursor renderer implementations HW
cursor realization paths for all cursor sprite types. This is in
preparation for realizing at more strategic times.
https://gitlab.gnome.org/GNOME/mutter/issues/77
The end goal here is to being able to realize at any point in time
through a single API, so start by moving state into the cursor sprite
implementation.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Remove some X11 compositing manager specific code from the general
purpose cursor tracker into a new MetaCursorSprite based special
purpose XFIXES cursor sprite.
https://gitlab.gnome.org/GNOME/mutter/issues/77
Introduce a new type MetaCursorSpriteXcursor that is a MetaCursorSprite
implementation backed by Xcursor images. A plain MetaCursorSprite can
still be created "bare bone", but must be manually provided with a
texture. These usages will eventually be wrapped into new
MetaCursorSprite types while turning MetaCursorSprite into an abstract
type.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It was prefixed with meta_cursor_, but it took a X11 Display, so update
the naming. Eventually it should be duplicated depending if it's a
frontend X11 connection call or a backend X11 connection call and moved
to the corresponding layers, but let's just do this minor cleanup for
now.
https://gitlab.gnome.org/GNOME/mutter/issues/77
This makes it possible to move out backing store specific code (such as
Xcursor handling) to separate units, while also making it easier to add
more types).
https://gitlab.gnome.org/GNOME/mutter/issues/77
Rename the two cursor role types according to the convention used by the
other roles. This means that MetaWaylandSurfaceRoleCursor was renamed to
MetaWaylandCursorSurface, and MetaWaylandSurfaceRoleTabletCursor was
renamed to MetaWaylandTabletCursorSurface. The corresponding filenames
were renamed accordingly too.
https://gitlab.gnome.org/GNOME/mutter/issues/77
drmModeAddFB2 allows userspace to specify a real format enum on
non-ancient kernels, as an improvement over the legacy drmModeAddFB
which derives format from a fixed depth/bpp mapping.
As an optimisation, Weston used to decide at the first failure of
drmModeAddFB2 that the ioctl was unavailable: as non-existent DRM
ioctls return -EINVAL rather than -ENOSYS or similar, bad parameters are
not distinguishable from the ioctl not being present.
Mutter has also implemented the same optimisation for dumb framebuffers,
which potentially papers over errors for the gain of avoiding one ioctl
which will rapidly fail on ancient kernels. Remove the optimisation and
always use AddFB2 where possible.
Closes: #14
And ensure the actor is no longer reactive even though it might live longer
because of close effects, GCs, and whatnot. This ensures the actor is not
eligible for pointer picking within the destruction of its surface.
Closes: #188
The MetaCloseDialog implementation object may stay artifically alive
for a longer period. This was usually fine till gnome-shell commit
b03bcc85aad, as the check_alive() timeout will keep running even
though the window went unmanaged/destroyed, leading to crashes.
In order to fix this, forcibly hide the dialog if it is visible and
the window is being unmanaged, so the timeout is stopped in time.
The order of role creation is undetermined, so we can't account that
the parent surface will have a role (and an actor) at the time of
creating the wl_subsurface role for a child surface.
So we must do it both ways, add the subsurface as a child on
get_subsurface() if the parent already got a role, and lazily add
child subsurface actors to the current one if the parent surface got
it at a later point.
Related: #132
When using the EGLStream backend, the MetaRendererNative passed a
GClosure to KMS when using EGLStreams, but KMS flip callback event
handler in meta-gpu-kms.c expected a closure wrapped in a closure
container, meaning it'd instead crash when using EGLStreams. Make the
flip handler get what it expects also when using EGLStreams by wrapping
the flip closure in the container before handing it over to EGL.
https://bugzilla.gnome.org/show_bug.cgi?id=790316
Commit 47131b1d ("frames: Handle touch events") introduced an assert to
make sure that all mouse button actions are handled in mutter.
However, mice can have a more than 5 buttons, so simply ignore the
"other" actions instead of aborting.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/160
After 20176d03, the Wayland backend only synchronizes with the
compositor after a geometry was set, and it was different from
the current geometry.
That commit was mistakenly comparing the geometry before chaining
up, which would yield a false negative on the case where the
client didn't call set_geometry() before commit().
Fix that by caching the old geometry locally, chain up (and thus
apply the new geometry rectangle), then comparing the old and
current geometry rectangles.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/150
This avoids overwhelming the GPU with trying to update mipmaps at a high
rate. Because doing so could easily cause a reduction in the compositor
frame rate and thus actually reduce visual quality.
In the case of a window that is constantly animating in the overview,
this reduces mutter's render time by around 20%-30%.
This is just done on wayland as it'll break horribly on X11, we let
this happen through pointer emulated events in XISelectEvents evmask
instead.
Some things had to be made slightly more generic to accomodate touch
events. The MetaFrames shall lock onto a single touch at a time, we
don't allow crazy stuff like multi-window drag nor multi-edge resizes.
https://bugzilla.gnome.org/show_bug.cgi?id=770185
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471
Various code assumed PipeWire function calls would never fail. Some can
actually fail for real reasons, and some currently can only fail due to
OOM situations, but we should still not assume that will always be the
case.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/102
The destroyed signal that was emitted if an imported surface was not
available when created, for example if the handle was invalid or
already unexported, was emitted on the wrong resource.
To check if a subsurface is effectively synchronized, we walk the
subsurface hierarchy to look for a non-subsurface parent or a subsurface
being synchronized.
However, when client is closing, the parent surface might already be
gone, in which case we end up with a surface being NULL which causes a
NULL pointer dereference and a crash.
Check if the parent surface is NULL to avoid the crash, and consider
it's already synchronized if it is NULL to avoid further updates.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/124
The current implementation of the XdgSurface v6 protocol does not check
if the window changed before calling meta_window_wayland_move_resize().
The problem with this approach is that calling this function is a costly
operation since we enter the compositor side. In GNOME Shell case, it is
in JavaScript, which triggers a GJS trampoline. Calling this function on
every mouse movement is naturally as terrible as it could be - and is
exactly what happens now.
This commit adds the necessary checks to only call move_resize() when
the window actually changed, or when it needs to be updated.
https://bugzilla.gnome.org/show_bug.cgi?id=780292
Issue: #78
This will be used by the next commit to determine when a window
geometry change should be ignored or not. Normally, it would be
enough to just check if the position and sizes changed.
The position, in this case, is relative to the client buffer, not
the global position. But because it is not global, there is one,
admitedly unlikely, situation where the window state is updated
while the client size and relative positions don't change.
One can trigger this by e.g. tiling the window to the half-left of
the monitor, then immediately tile it to half-right. In this case,
the window didn't change, just it's state, but nonetheless we need
to notify the compositor and run the full move/resize routines.
When that case happens, though, the MetaWindowWayland is tracking
the pending state change or a move. And this is what we need to
expose.
https://bugzilla.gnome.org/show_bug.cgi?id=780292
Issue: #78
In the old, synchronous X.org world, we could assume that
a state change always meant a synchronizing the window
geometry right after. After firing an operation that
would change the window state, such as maximizing or
tiling the window,
With Wayland, however, this is not valid anymore, since
Wayland is asynchronous. In this scenario, we call
meta_window_move_resize_internal() twice: when the user
executes an state-changing operation, and when the server
ACKs this operation. This breaks the previous assumptions,
and as a consequence, it breaks the GNOME Shell animations
in Wayland.
The solution is giving the MetaWindow control over the time
when the window geometry is synchronized with the compositor.
That is done by introducing a new result flag. Wayland asks
for a compositor sync after receiving an ACK from the server,
while X11 asks for it right away.
Fixes#78
Before we just set it to "none", but this was not enough since various
calls will depend on not just the context being active, but the main
rendering surface.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/21
When deriving the global scale directly from the current hardware state
(as done when using the X11 backend) we are inspecting the logical
state they had prior to the most recent hot plug. That means that a
primary monitor might have been disabled, and a new primary monitor may
not have been assigned yet.
Stop assuming a primary monitor has an active mode before having
reconstructed the logical state by finding some active monitor if the
old primary monitor was disabled. This avoids a crash when trying to
derive the global scale from a disabled monitor.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/130