This commit adds support to atomic KMS backend for optional plane property
prop_fb_damage_clips. Some drivers (e.g. EVDI) take advantage of this
property and process only updated regions of the screen instead of
processing the full frame. This can save system resources.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1879>
commit c4a73e795020722eda3e2bec0c16d96f9f37333b added
code to cleanup the renderer when the meta backend is
disposed. Unfortunately, this introduced a crash when
the window manager is replaced.
This is because cleaning up the renderer involves talking
to the X server over a display connection that's closed
two lines higher as part of the clutter_backend_destroy
call.
This commit fixes the crash by swapping their order.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1965>
Primary monitor is just the same of the other monitors, but it has a
primary monitor flag. Since the computation of the scaling isn't
dependent anymore on the computed configuration we can now generate the
primary monitor config together with the others.
However, we've to ensure that the primary monitor is the first of the
configs list in order to properly compute the positioning.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Compute the monitor scaling in a separated function using the primary
monitor (not its config) and pass it to the creation function instead.
This will allow removing the special logic for the primary monitor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Factorize the creation of a configuration inside one function that looks for
the primary monitor and the other monitors using the matching rules and
dispose them according to the chosen policy (checking if the result is valid
when using the suggested positioning).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Add a find_monitors function that allows to search for monitors that match
the MonitorMatchRule filter and use this to look for the primary monitor and
the other monitors that need to match the requested filter in order to be
configured.
Having just one function doing this kind of checks reduces the possibility
of unexpected results.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
It could happen that monitors suggest to use coordinates that don't take
in consideration the scaling applied to one monitor, and such the
generated configuration is not valid because not all the monitors are
adjacent.
So enforce this check before accepting a suggested configuration as it
is.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Currently, if g-r-d closes the read end of the pipe for a
SelectionRead() operation, due to realizing that the application, that
should provide the mime type content, does not provide any content,
mutter won't notice that and still assumes that the read() operation
on the pipe in g-r-d is still happening, as mutter never writes to the
pipe in that situation and therefore cannot realize that the pipe is
already closed.
The effect of this is, that if g-r-d aborts a read() operation and
requests a new read() operation via SelectionRead(), mutter will deny
the request since it assumes that the previous read() operation is
still ongoing.
Fix this behaviour by also checking the pipe fd in mutter before
denying a SelectionRead() request.
https://gitlab.gnome.org/GNOME/gnome-remote-desktop/-/issues/60
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1874>
With some resolutions (such as 4096x2160) we may compute duplicated
scale factors because we used a too wide threshold to check for an
applicable value.
In fact, while when we're at the first and last values it's fine to
search applicable values up to SCALE_FACTORS_STEP, on intermediate ones
we should stop in the middle of it, or we're end up overlapping the
previous scaling value domain.
In the said example in fact we were returning 2.666667 both when
looking to a scaling value close to 2.75 and 3.00 as the upper bound of
2.75 (3.0) was overlapping with the lower bound of 3.0 (2.75).
With the current code, the lower and upper bounds will be instead 2.875.
Adapt test to this, and this allows to also ensure that we're always
returning a sorted and unique list of scales (which is useful as also
g-c-c can ensure that this is true).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
We introduced META_MONITOR_SCALES_CONSTRAINT_NO_FRAC to get global scale
values however, this didn't work properly for some resolutions.
In fact it may happen that for some resolutions (such as 3200x1800) that
we did not compute some odd scaling levels (such as 3.0) but instead
its closest fractional value that allowed to get an integer resolution
(2.98507452 in this case).
Now this is something relevant when using fractional scaling because we
want to ensure that the returned value, when multiplied to the scaled
sizes, will produce an integer resolution, but it's not in global scale
mode where we don't use a scaled framebuffer.
So, take a short path when using no fractional mode and just return all
the applicable values without waste iterations on fractional values.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
When deriving the global scale from current monitor, we were just checking the
supported value by the primary monitor, without considering weather the current
scale was supported by other monitors.
Resolve this by checking if the picked global scale is valid for all active
monitors, and if it's not the case, use a fallback strategy by just picking the
maximum scale level supported by every head.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/407
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/336>
In Xrandr we were caching the available scaling modes that were computed just
for the current mode, for each monitor, while we can actually reuse the
default implementation, by just passing the proper scaling constraint.
In monitor we need then to properly filter these values, by only accepting
integer scaling factors that would allow to have a minimal logical monitor
size.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/407
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/336>
As with the compositor type enum, also have the X11 display policy enum,
as it's also effectively part of the context configuration. But as with
the compositor type, move it to a header file for enums only, and since
this is a private one, create a private variant meta-enums.h.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Scanout doesn't go through the usual path of compositing and doing
eglSwapBuffers, therefore it doesn't hit the timestamp query placed in
that path. Instead, get the timings by binding the scanout buffer to an
FBO and doing a timestamp query on the FBO.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1762>