This patch unfortunately results in situations where it is intended
that the focus change happens while a grab is present (e.g. Alt+tab
popup), resulting in confused focus state.
This commit is reverted in order to try a similar approach at a
different level.
This reverts commit 7531669b4f.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2832>
We used it to retrieve a Display, and convert between Atoms and
strings. We can just use the MetaX11Display's Display (It's the
same than GDK's anyways) and use XInternAtom/XGetAtomName for
these conversions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2836>
We didn't always set an implementation, when the foreign toplevel wasn't
found, and when the importer tried to set the parent-child relationship,
the implementation was missing and we'd crash in wl_closure_invoke() in
libwayland-server.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2834>
Windows that are decorated may get configure requests before
the frames client created a corresponding frame window and Mutter
reparented the window.
Since the configure request results in the buffer size being
used to update the window size and the window does not have a
buffer yet, these requests could mistakenly result in the client
window being given a minimal size.
In these situations, do not use the buffer size but the given
size. The window still has to undergo frame creation and
reparenting before being shown for the first time.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2588
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2605
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2808>
This used to be implicitly done by popups using a META_GRAB_OP_WAYLAND_POPUP
MetaDisplay grab. Since commit a8cd488c6f Wayland popups no longer do that,
so the keyboard focus was simply unset if a popup was destroyed while having
the keyboard focus.
Trigger a full input focus sync, so the correct MetaWaylandKeyboard focus
surface is looked up from the focused MetaWindow.
Fixes: a8cd488c6f - wayland: Drop redundant MetaDisplay grab op
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2833>
On one hand, this used to be handled generically in all the paths that
changed the MetaWaylandPointer focus surface, induced by user interaction
or not.
On the other hand, just listening for crossing events is not sufficient
since those also do happen programmatically. We must only listen to
crossing events that have a physical source device, meaning this was
created through user interaction.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/888
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2828>
On Wayland sessions, this handling is unnecessary and even prone
to confusion (e.g. crossing serials are only ignored in X11-exclusive
paths, so this handling competes directly with that in MetaWaylandPointer).
Avoid it entirely there, so MetaWaylandPointer can figure out
sloppy/mouse mode focus for all Wayland/Xwayland surfaces.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2828>
In GTK this is only used for GTK clipboard/DnD selections, and
finding out whether there is a compositing manager in charge.
In Mutter, we manage our own clipboard/DnD selections, and don't
perform any rendering through GTK in the Mutter process.
So there's no special reason to let these events go through GTK,
and (related to xwayland-on-demand?) there may be race conditions
in the handling of the second feature.
There's a chance this race condition may be in Mutter, but it
does not sound worth to chase this race condition when we can
let GTK ignore these events. And it does not make sense to "fix"
gtk3 for this Mutter-only condition, when we intend to eventually
avoid it.
So, take the easy path and ignore these events.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2617
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2831>
The first monitor in stacking tests is the primary monitor but that
doesn't have to stay this way forever. Instead of special casing the
name "primary" to refer to whatever monitor happens to be the primary
monitor, we add an `assert_primary_monitor` command to verify that the
monitor that should be the primary monitor actually is.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2748>
New add_monitor command for adding secondary monitors. Support setting
the workspaces-only-on-primary preference.
The stacking test tests the focus and stacking for multiple monitors
with workspaces-only-on-primary=true. The default_focus changes
previously broke this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2748>
bind_output() creates output interface resource, but does not
set implementation for it when wayland_output->monitor is NULL.
However, when the wayland library is running wl_closure_invoke(),
it expects the implementation to be non-NULL, and if not, it just
segfaults mutter by NULL pointer dereference.
This commit tries to address this issue by setting an implementation
when wayland_output->monitor is NULL. This could help prevent crash
when resuming from suspend or hotplugging displays.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2570
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2827>
The order of dependencies influences the order of -L arguments to gcc/ld,
we should put our private library first, so that introspection prefers
looking up libraries in private paths than public ones.
This could bring problems in API updates of the libmutter-test library,
since introspection would still prefer the old installed one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2826>
ClutterActions now no longer receive their events via
clutter_actor_event(), instead they get special treatment by the stage
now. Make the MetaGestureTracker work with this and stop emitting events
directly to Clutter via clutter_actor_event(), but instead let them get
through to Clutter (but still not to Wayland).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
The previous logic tried to keep the position of the top left corner of
the window relative to the top left corner of the monitor. This allowed
the window to move out of the target monitor. This change keeps the
proportions of the distance between the window and the monitor borders
instead if possible. Otherwise it keeps the relative position of the
center of the window clamped to [0,1] to make sure the window lands on
the right output.
This also slightly changes what monitor is considered to be on: the
monitor which contains the center of the window and, if the center is on
no monitor, the monitor wich overlaps the most with the window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2591>
This partly reverts f9857cb8 but leaves an exception for cursor
surfaces in place, as some apps/toolkits will likely not get updated
anytime soon to ensure cursor themes comply with the Wayland spec.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2815>
So we can remove the additional `next_fb` and `current_fb` pointers from
`MetaOnscreenNativeSecondaryGpuState`.
Some non-scanout buffers also need to be held in the case of GL blitting
which completes in the background. Those are referenced from the scanout
buffers themselves to ensure the source buffers live just as long.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2087>
As with GAMMA_LUT, track whether privacy screen state has been pushed to
KMS in the onscreen. This leaves MetaOutput and MetaCrtc to be about
configuration, and not application.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
As with CRTC GAMMA_LUT, we're moving towards making the entity managing
KMS updates aware if there are any changes to be made, and whether KMS
updates are actually needed or not, and for privacy screen changes, this
means we need to communicate whether the privacy screen state is valid
or not. This allows the caller to create any needed MetaKmsUpdate.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
We're moving towards making the entity managing KMS updates aware if
there are any changes to be made, and whether KMS updates are actually
needed or not, and for GAMMA_LUT changes, this means we need to
communicate whether the GAMMA_LUT state is valid or not. This allows the
caller to create any needed MetaKmsUpdate.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
We may fall through these paths on --nested too, resulting in us poking the
wrong internals from the wrong MetaRenderer subclass. Fixes launching of
clients using wl_drm in --nested.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2818>
Running each stacking test as a separate installed-test is analogous to
what was done for build-time tests in c6d1cf4a (!442) and should make it
easier to track regressions, by being able to see whether a regression
is specific to one .metatest script or applies to more than one.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2773>
While completely untested, at least this makes it work "in theory"
again. Before it'd listen to signals on the stage, but have an incorrect
type signature to handle the test paint procedures, meaning it'd
probably crash or cause memory corruptions.
What was needed was a signal which in the callback the test could call
some cogl functions to paint on the framebuffer. While there is no such
signal on the stage, and the ClutterActor::paint signal (which they
probably used in the past) is long gone, lets add a "test actor" that is
just a wrapper that adds that paint signal with a paint context.
The tests that need it are changed to add this actor to the stage, and
to listen to the paint signal on the actor instead of incorrectly
listening on stage signals.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2807>
At least indirectly, this is set as object qdata while the
window drag is ongoing, and reset/reconstructed if needed.
Consequently, this edge data does not need to be stored in
the MetaDisplay struct anymore.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Even though the data is still stored in the display, add a "high
level" meta_window_drag_update_edges() call, so that the cached
edges may be updated while a window drag operation is ongoing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This is a public API change. Add device/sequence parameters to this
operation, so that window dragging and resizing can stick to one
set of pointing events of them all.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Since MetaWindowDrag took a lot of this code to handle window drags
internally with less interactions with the rest of the stack, this
code in display/window/keybindings is unused.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Flip the switch in using MetaWindowDrag, leaving display grab
ops and a bunch other code unused. Some places checked the grab op
and/or window in complex ways, others just checked for grab existence
and should now look for clutter ones, and others already were already
doing this in addition.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This helper object (and the whole window drag operation) will be
requested to the compositor instead of created directly, and only
one of those can exist at a time, so the compositor will also
safeguard that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Since SSD X11 windows require synchronization between frame and client
windows on resizes, updates do not always happen immediately but in
control of external factors (i.e. when both windows become to have
a coherent size).
This method will be used to update the window position between
resize/sync operations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This compositor-side object will single-handedly drive a window
drag operation. Currently, this largely copies meta_display_begin_grab_op
and meta_display_end_grab_op, except grabbing is done through a
ClutterGrab instead of direct meta_backend_grab_device() calls. This
also means that the switch from passive to active keyboard grabs is
handled differently.
Currently, this object is dormant. It requires moving more code from
other places to become a fully functional replacement.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
We only allow partial grabs in the case of a keyboard-type MetaGrabOp
happening while the pointer cannot be grabbed. In that case, it's not
a big stretch to unconditionally ungrab the pointer device at the time
of undoing the grab, as it will be always ineffective (not even implicit
grabs on frame windows can happen now, inside Mutter).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This is no longer necessary, since the SSD frames are no longer
part of Mutter process, so it is not the MetaX11Display connection
which holds the implicit grab when a mouse button is pressed over
a window frame (say, to start a drag).
As the SSD frames client communicates the same way than CSD windows
for window operations, it is also expected to undo its implicit
grab before requesting a window move/resize operation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
The final effect of this boolean can now be expressed through the
META_GRAB_OP_WINDOW_FLAG_UNCONSTRAINED flag to MetaGrabOp. Use that
in the relevant places, and drop the argument.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Now that it is called from a single place, there's a few arguments
that are unnecessary:
- button and modifiers are unused
- already_grabbed was originally added to handle grab transitions between
window menus (GtkMenus, back in the day) with display grabs. It's no
longer necessary now
- frame_action can be passed through the META_GRAB_OP_WINDOW_FLAG UNCONSTRAINED
flag
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Leave meta_window_begin_grab_op() as the only public API to initiate
a display grab. There's no longer grab operations that don't attain
windows, and ending these grabs usually happen through user interaction
when the right circumstances happen.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
There is no longer reason to call meta_display_begin_grab_op() except
for window grab operations, and meta_window_begin_grab_op() is a
perfectly fine entry point for all window grab operations.
Move away from meta_display_begin_grab_op().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Currently, it is thought out to be called with META_GRAB_OP_KEYBOARD*
grab op parameters. Make it more generic so it can also be called for
pointer operations (avoiding pointer warping in that situation).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Unlike the comment suggests, this piece of event handling manages
the ungrabbing of a window on button press in the following 2
conditions:
- If a keyboard grab operation was triggered, the window does
additionally follow the pointer, and first button press ends
the grab.
- If a button-press grab is ongoing on the window, but more buttons
are pressed.
We can simplify this to just happen every time a button press event
is received while a window grab op is ongoing. The only case where
this might diverge a bit is same button presses from different
pointer devices, and it's not a big stretch to also undo the grab
in that situation.
This also happens to make the "button" argument in
meta_display_begin_grab_op() completely unused.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
The frame_action boolean is only used by constraints.c code, in order to
determine whether a moving window should be able to move past the top
bar or not.
We can avoid the special casing by passing this information as a
META_GRAB_OP_WINDOW_FLAG_UNCONSTRAINED flag passed with the grab op.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This is no longer necessary to prevent the bits we wanted to be
prevented by the presence of this grab. We can drop this, and
let it work through the MetaWaylandPointerGrab interface.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
The whole reason for META_GRAB_OP_WAYLAND_POPUP to exist is to
avoid windows from being activatable/movable/resizable when a
grabbing xdg_popup is active.
Use the meta_display_is_grabbed() method which can tell this
from existing MetaWaylandCompositor grabs, so that this remains
true after dropping META_GRAB_OP_WAYLAND_POPUP.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Make this public API check just return a boolean about whether
there is an existing grab, instead of exposing MetaGrabOp.
It is desirable to avoid exposing details like
META_GRAB_OP_WAYLAND_POPUP, so that MetaDisplay and wayland
grabs can port to ClutterGrab at their own pace, but also
this further information is unused.
This is likely to be temporary API anyways, after both
MetaDisplay and wayland grabs port to Clutter, it will be
possible to check the ClutterStage for all of them.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Rewrite this codepath so it handles the grab ops that it cares
about, and ignores the rest. This way the code works despite
possible future modifications to MetaGrabOp (e.g.
META_GRAB_OP_WAYLAND_POPUP removal).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
This piece of event handling only applies on windows receiving events while
the display is ungrabbed (i.e. for raising it, or beginning a move/resize
operation).
Move the checks on the current grab operation outside of window.c and into
events.c, so all checks about the current grab operation move closer to the
main event handler.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>