- Make Texture a parent GObject class and move the vtable funcs as vfuncs
instead of an interface as we would like to have dispose free the TextureLoader.
- Make the various texture sub-types inherit from it.
- Make all the sub-types constructors return a CoglTexture instead of their respective
specific type. As most of the times, the used functions accept a CoglTexture,
like all the GTK widgets constructors returning GtkWidget.
- Fix up the basics of gi-docgen for all these types.
- Remove CoglPrimitiveTexture as it is useless: It is just a texture underhood.
- Remove CoglMetaTexture: for the exact same reason as above.
- Switch various memory management functions to use g_ variant instead of the cogl_ one
Note we would still want to get rid of the _cogl_texture_init which is something
for the next commit
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3193>
To be able to later support more complex YUV formats, we need to make
sure that MetaShapedTexture (the one who will actually render the
texture) can use the MetaMultiTexture class.
Co-Authored-By: Robert Mader <robert.mader@collabora.com>
Co-Authored-By: Daniel van Vugt <daniel.van.vugt@canonical.com>
Co-Authored-By: Sebastian Wick <sebastian.wick@redhat.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2191>
Instead of using `clutter_actor_get_resource_scale()`, we now deduce the
intended buffer scale from the window by dividing the unscaled size by
the final actor size. This is more correct as while the return value of
`clutter_actor_get_resource_scale()` depends only on the monitor where
the surface resides, the actual scale of the surface is determined
solely by the application itself. `get_resource_scale` will differ from
the actual buffer scale if the application only supports 100% scaling
(Xwayland), or is performing scaling with wp_viewporter (clients using
fractional_scale_v1).
This also fixes a mismatch between the calculated buffer sizes between
`meta_window_actor_get_buffer_bounds` and
`meta_window_actor_blit_to_framebuffer` which causes broken
screencasting for Chromium 114 and later when using the native Ozone
Wayland backend.
Additionally, this commit also changes
`meta_window_actor_blit_to_framebuffer` from using a simple translation
to using an inverted matrix transformation of the transformation matrix
between the parent of the window actor and the surface actor to ensure
maximum sharpness for fractionally scaled windows.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3053>
Linear sampling can influence the value of surrounding pixels beyond
the scaled framebuffer extents calculated during stage view rendering,
resulting in flickering graphical artifacts due to unaccounted pixel
changes. This is exhibited in xfreerdp and wlfreerdp at 150% display
scaling.
Fix this by ensuring that all pixels that may be affected by linear
scaling is included in the framebuffer redraw clip by padding the actor
redraw clip.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2771>
Attaching a new buffer with a different size than the old one means
that the viewport needs to be recalculated.
Not doing this caused the viewport to be incorrectly applied when
viewport_src_rect remained the same after attaching such buffer.
Pipeline reset usually happens when applying a new viewport,
but it doesn't happen when the viewport values remain the same.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2689>
This reverts an attempt at saving texture memory that was introduced
recently in 16fa2100. It was misguided because the same texture may be
needed in the next frame if a window has multiple previews visible on
screen at once (gnome-shell's overview). Keeping the mipmaps around
seems to reduce the peak render times of the overview by roughly 5%-10%.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2598>
Although mipmapping is still slower than not mipmapping, commit 16fa2100
simplified N synchronous draw calls per texture tower into just one. So
it's more efficient now, and four years have passed since the throttling
was introduced so people also have better hardware as well as mutter being
generally faster than it used to be. So I am happy to effectively revert
commit c9c32835.
This means antialiasing will remain consistent rather than popping in and
out of existence.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/403
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2538>
With `META_MONITOR_TRANSFORM` values matching their `WL_OUTPUT_TRANSFORM`
counterparts, the definition from the Wayland spec applies: the
`META_MONITOR_TRANSFORM` value tells us how the output was rotated
and that the buffer was drawn by the client to compensate for that.
The matrix describes the transformation from surface- to buffer-
coordinates, so the operation we need here is the same one that
the client applied (not from buffer- to surface-coordinates, i.e.
the inverse).
While on it fix `FLIPPED_90` and `FLIPPED_270` to use the correct
axes: flip on the x-axis, rotation on the z-axis.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2459>
When we get passed a "snippet" to the shaped texture, it's added as a
pipeline layer snippet to change how the source texture is sampled. When
we draw from a texture tower however we have allocated regular textures
which doesn't need any special layer snippet, so create separate
pipelines for those that doesn't use that snippet.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/528
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2278>
This was introduced by accident in commit 1467b6b02a73bca76
y-inverted textures in combination with shape masks appear to
be only commonly used with EGLstreams. However, as we draw the
shape mask ourselves, we don't want to apply the y-invert to it
as testified by the left over `cogl_pipeline_set_layer_matrix()`.
Note that we still allow to apply viemports and buffer transforms,
as the Xwayland mode setting emulation may use it (in fact only
the former, but it probably does not hurt to leave the later as well).
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1792
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1937>
When a viewport source rect or destination size is set, `stex->dst_width`
gives us the the cropped and/or scaled size. At this step, we need the
uncropped/unscaled size however.
Note: this is only ever relevant if buffer transform and viewport are
used together - otherwise the values are the same.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1836>
When using buffer transforms and viewports together, we currently
apply the transformation (read: rotation) first, resulting in
wrong buffer coordinates for viewport source rects.
Flip the order in whitch we apply our matrix transformations.
This can be tested e.g. via:
`weston-simple-damage --use-viewport --transform=flipped-180`
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1832>
When the texture size is invalidated using `invalidate_size()`, the new
size will only get calculated the next time `update_size()` is
called. This happens e.g. in `meta_shaped_texture_get_preferred_size()`
via `ensure_size_valid()`.
`update_size()` can chain up to `clutter_content_invalidate_size()`
as well as emitting a `size-changed` signal. If this happens during
layout, the result is a 'change the layout conditions during layout'
issue, causing heavy breakage in e.g. the Shell overview.
To fix this, expose `ensure_size_valid()` as API so callers can make
sure the texture has a valid size without creating redundant size
invalidations calls.
Note that if a buffer with a new size is attached we already trigger
`update_size()` explicitely, avoiding such situations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1799>
If only a viewport destination size is set, the noop viewport has
to take the buffer scale into account.
If a viewport source but no viewport destination size is set, the
destination size is that of the viewport source, not of the whole
texture.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1786>
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
CoglMatrix already is a typedef to graphene_matrix_t. This commit
simply drops the CoglMatrix type, and align parameters. There is
no functional change here, it's simply a find-and-replace commit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Using opaque painting paths can have a big impact on painting performance.
In order to easily validate whether we use the opaque paths, add a opaque
(green) or blended (purple) overlay over painted areas if the
`META_DEBUG_PAINT_OPAQUE_REGION` `MetaDebugPaintFlag` is set.
You can do so in `lg` via:
`Meta.add_debug_paint_flag(Meta.DebugPaintFlag.OPAQUE_REGION)`
This can be helpful for application developers, as previously it was not
trivial to check whether e.g. Wayland or X11 opaque regions where
properly set.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1372
We were setting the pipeline colour to all white (1.0, 1.0, 1.0, 1.0)
and so the default layer combine function multiplied each pixel
(R, G, B, A) by all ones. Obviously multiplying by one four times per
pixel is a waste of effort so we remove the colour setting *and* set
the layer combine function to a trivial shader that will ignore whatever
the current pipeline colour is set to. So now we do **zero** multiplies
per pixel.
On an i7-7700 at UHD 3840x2160 this results in 5% faster render times
and 10% lower power usage (says intel_gpu_top). The benefit is probably
much higher for virtual machines though, as they're no longer being
asked to do CPU-based math on every pixel of a window.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1331
In commit 4c1fde9d MetaCullable related code was moved out of
MetaShapedTexture into MetaSurfaceActor. While generally desirable,
this removed drawing optimizations in MetaShapedTexture for partial
redraws. The common case for fully obscured actors was still supposed
to work, but it was now discovered that it actually did not.
This commit revert parts of 4c1fde9d: it reintroduces clipping
to MetaShapedTexture but leaves all culling and actor related logic
in MetaSurfaceActor.
Thanks to Daniel van Vugt for uncovering the issue.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/850
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1295https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1326