Under X11 we can only ever have the same scale configured on all
monitors. In order to use e.g. scale 2 when there is a HiDPI monitor
connected, we must not disallow it because there is a monitor that does
not support scale 2. Thus we must show the same scale for every monitor
and monitor mode, even though it might result in a bad experience.
Do this by iterating through all the monitors adding all supported
scales by the preferred mode, combining all the supported scales. This
supported scales list is then used for all monitor and modes no matter
what.
https://bugzilla.gnome.org/show_bug.cgi?id=788901
Adding an internal signal and use it to update the internal state before
emitting "monitors-changed" which will be repeated by the screen to the world.
https://bugzilla.gnome.org/show_bug.cgi?id=788860
When creating a renderer with a custom winsys (which is always how
mutter uses cogl) make it possible to pass a user data with the winsys.
Still unused.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
In order to eventually support multilpe GPUs with their own connectors,
split out related meta data management (i.e. outputs, CRTCs and CRTC
modes) into a new MetaGpu GObject.
The Xrandr backend always assumes there is always only a single "GPU" as
the GPU is abstracted by the X server; only the native backend (aside
from the test backend) will eventually see more than one GPU.
The Xrandr backend still moves some management to MetaGpuXrandr, in
order to behave more similarly to the KMS counterparts.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Move finding, opening and managment of the KMS file descriptor to
MetaMonitorManagerKms. This means that the monitor manager creation can
now fail, both if more than one GPU with connectors is discovered, or
if finding or opening the primary GPU fails.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
The error was printed, then dropped, eventually resulting in another
generic error being printed. Lets just propogate the error all the way
up instead.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Move code dealing with Xrandr MetaCrtcs and related functionality to its
own file. Eventually, MetaCrtcCrtc should be introduced, based on
MetaCrtc, and this commit is in preparation for that.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Move code dealing with X11 MetaOutputs and related functionality to its
own file. Eventually, a MetaOutputXrandr should be introduced, based on
MetaOutput, and this commit is in preparation for that.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Instead of passing it around or fetching the singleton, keep a pointer
to the monitor manager that owns the CRTC. This will eventually be
replaced with a per GPU/graphics card object.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Instead of passing it around or fetching the singleton, keep a pointer
to the monitor manager that owns the output. This will eventually be
replaced with a per GPU/graphics card object.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Convert MetaCrtcMode from a plain struct to a GObject. This changes the
storage format, and also the API, as the API was dependent on the
storage format.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Turn MetaCrtc into a GObject and move it to a separate file. This
changes the storage format, resulting in changing the API for accessing
MetaCrtcs from using an array, to using a GList.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Turn MetaOutput into a GObject and move it to a separate file. This
changes the storage format, resulting in changing the API for accessing
MetaOutputs from using an array, to using a GList.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
The XIQueryDevice function used by device_query_area can return a NULL
pointer and set n_devices to a negative number in some cases. We add
additional checks to prevent a segfault.
https://bugzilla.gnome.org/show_bug.cgi?id=787649
When we update state, we might not have set the current config yet (for
example if the Xrandr assignment didn't change), so pass the monitors
config we should derive from instead of fetching it from the monitor
config manager.
https://bugzilla.gnome.org/show_bug.cgi?id=787477
Add API to get the layout group (layout index) currently active. In the
native backend this is done by fetching the state directly from the
evdev backend; on X11 this works by listening for XkbStateNotify
events, caching the layout group value.
https://bugzilla.gnome.org/show_bug.cgi?id=786408
Don't wait for clutter to initialize for connecting to X11; do it when
constructing the backend instance. This way we can later depend on
having an X11 connection earlier during initialization.
https://bugzilla.gnome.org/show_bug.cgi?id=786408
The 'normal' transform has the value 0, so the g_warn_if_fail()
expression failed. Correct it so that it doesn't complain when no
transform is checked.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The problem is that libinput offers the possibility to not enabled
dragging when tap-to-click is enabled but mutter doesn't. For people who
have a sensitive touchpad and who like tap-to-click option, dragging is
launched even when you don't want it : for example, when you select a
folder, most of the time the folder is dragging whereas just selected or
when you want to select some lines of a text file, several lines are
moved as a cut-paste which is not expected and erase datas.
To fix it, you need to have the possibility to desactivate the drag
option when you use tap-to-click in mutter. Because it's already a
specification of libinput, it remains to add it to mutter.
Implementation with X11 is added too.
https://bugzilla.gnome.org/show_bug.cgi?id=775755
This changes the API to pass supported scales per mode instead of
providing a global list. This allows for more flexible scaling
scenarious, where a scale compatible with one mode can still be made
available even though another mode is incompatible.
https://bugzilla.gnome.org/show_bug.cgi?id=765011
When the logical layout mode is used, allow configuring the scaling to
be non-integer. Supported scales are so far hard coded to include at
most 1, 1.5 and 2, and scales that doesn't result in non-fractional
logical monitor sizes are discarded.
Wayland outputs are set to have scale ceil(actual_scale) meaning well
behaving Wayland clients will provide buffers with buffer scale 2, thus
being scaled down to the fractional scale.
https://bugzilla.gnome.org/show_bug.cgi?id=765011
To support fractional scaling, change the stage view scale to be a
float instead of an int. Also change the places where it is retrieved
and used when scaling things.
https://bugzilla.gnome.org/show_bug.cgi?id=765011
Wacom's display tablets typically do not have (0,0) coincident with the top
left corner of the screen. This "outbound" area must be taken into account
when setting the area or else an unexpected offset of the pointer will
occur.
https://bugzilla.gnome.org/show_bug.cgi?id=784009
Due to the pen/eraser device separation in X11, CLUTTER_TABLET_DEVICE does
not apply there, this device type is only used in native/evdev. Checking
for CLUTTER_PEN/ERASER_DEVICE makes the left-handed mode correctly applied
on tablets.
https://bugzilla.gnome.org/show_bug.cgi?id=782027
This commit makes it possible to configure logical monitor scale also
when running on top of an X11 server using Xrandr. An extra property
'requires-globla-scale' is added to the D-Bus API is added to instruct
a configuration application to only allow setting a global logical
monitor scale.
This is needed to let gsd-xsettings use the configured state to set a
XSettings state that respects the explicit monitor configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Disable-while-typing disables the touchpad while the user is typing.
This patch introduces the necessary backend code to implement the
org.gnome.desktop.peripherals.touchpad.disable-while-typing setting of
gsettings-desktop-schemas which was implemented in commit
4c5b1c1df399d6afaaccb237e299ccd1d5d29ddd and released as part of 3.24.
This is known as dwt in libinput.
This patch has been tested on X11 and Wayland.
https://bugzilla.gnome.org/show_bug.cgi?id=764852
Let the backend implementations create their own input settings
backend, as is done with other backend specific special purpose
backends. Also use the macro for declaring the GType.
https://bugzilla.gnome.org/show_bug.cgi?id=782152
Make the nested backend emulate how the real backends actually draw,
i.e. by drawing each CRTC separately. This makes it possible to test
different configuration paths that can take place on different
hardware, without having said hardware.
For example, by setting MUTTER_DEBUG_TILED_DUMMY_MONITORS and
MUTTER_DEBUG_NESTED_OFFSCREEN_TRANSFORM to "1", one can test a system
with MST (tiled) monitors where the GPU doesn't support some transform.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Always draw the stage to an offscreen framebuffer when using the nested
backend, so that we more emulate things more similarly to how it works
real-world, i.e. it'll work the way whether stage views are enabled or
not.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Keep track of the logical monitor transform. When a logical monitor is
transformed, all of its monitors are also transformed in the same way.
A logical monitor can either be transformed on the CRTC level, or using
an offscreen intermediate buffer. In both cases will the logical
monitor be transformed, but only in the latter will the view be
transformed.
MetaCrtcs::transform currently does not represent whether the CRTC is
configured to be transformed or not; only when the backend can handle
it does it correctly correspond to the actual CRTC configuration. This
is intended to change with MetaMonitorConfigManager.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Split up the MetaRendererX11 class into one for when running as a
X11 compositing manager, and one for when running as a nested Wayland
compositor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This commit adds support for rendering onto enlarged per logical
monitor framebuffers, using the scaled clutter stage views, for HiDPI
enabled logical monitors.
This works by scaling the mode of the monitors in a logical monitors by
the scale, no longer relying on scaling the window actors and window
geometry for making windows have the correct size on HiDPI monitors.
It is disabled by default, as in automatically created configurations
will still use the old mode. This is partly because Xwayland clients
will not yet work good enough to make it feasible.
To enable, add the 'scale-monitor-framebuffer' keyword to the
org.gnome.mutter.experimental-features gsettings array.
It is still possible to specify the mode via the new D-Bus API, which
has been adapted.
The adaptations to the D-Bus API means the caller need to be aware of
how to position logical monitors on the stage grid. This depends on the
'layout-mode' property that is used (see the DisplayConfig D-Bus
documentation).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Make the concept of maximum screen size optional, as it is not
necessarily a thing on all systems (e.g. when using the native backend
and stage views).
The meta_monitor_monitor_get_limits() function is replaced by a
meta_monitor_manager_get_max_screen_size() which fails when no screen
limit is available. Callers and other users of the previous max screen
size fields are updated to deal with the fact that the limit is
optional.
The new D-Bus API is changed to move it to the properties bag, where
its absence means there is no applicable limit.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a new D-Bus API that uses the state from GetCurrentState to
configure high level monitors, instead of low level CRTCs and
connectors. So far persistent configuration is not implemented, as
writing to the configuration store is still not supported.
https://bugzilla.gnome.org/show_bug.cgi?id=777732