We were setting the pipeline colour to all white (1.0, 1.0, 1.0, 1.0)
and so the default layer combine function multiplied each pixel
(R, G, B, A) by all ones. Obviously multiplying by one four times per
pixel is a waste of effort so we remove the colour setting *and* set
the layer combine function to a trivial shader that will ignore whatever
the current pipeline colour is set to. So now we do **zero** multiplies
per pixel.
On an i7-7700 at UHD 3840x2160 this results in 5% faster render times
and 10% lower power usage (says intel_gpu_top). The benefit is probably
much higher for virtual machines though, as they're no longer being
asked to do CPU-based math on every pixel of a window.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1331
In commit 4c1fde9d MetaCullable related code was moved out of
MetaShapedTexture into MetaSurfaceActor. While generally desirable,
this removed drawing optimizations in MetaShapedTexture for partial
redraws. The common case for fully obscured actors was still supposed
to work, but it was now discovered that it actually did not.
This commit revert parts of 4c1fde9d: it reintroduces clipping
to MetaShapedTexture but leaves all culling and actor related logic
in MetaSurfaceActor.
Thanks to Daniel van Vugt for uncovering the issue.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/850
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1295https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1326
One of the important classes in Mutter's handling of client textures is
the `MetaShapedTexture`. This commit adds a few gtk-doc comments which
explain its purpose, with special attention to the viewport methods.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1210
A paint flag affects a paint operation in ways defined by the flags.
Currently no flags are defined, so no semantical changes are defined
yet. Eventually a flag aiming to avoid painting of cursors is going to
be added, so that screen cast streams can decide whether to include a
cursor or not.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1207
We checked that the content size was appropriately painted in the stage,
but didn't take into account that the size of the sampled texture
region, meaning that when stage views were scaled, we'd think that we
would draw a texture scaled, as e.g. a 200x200 sized texture with buffer
scale 2 would have the size 100x100. When stage views were not scaled,
we'd apply a geometry scale meaning it'd end up as 200x200 anyway, thus
pass the check, but when stage views are scaled, it'd still be painted
as a 100x100 shaped texture on the stage, thus failing the
are-we-unscaled test.
Fix this by comparing the transformed paint size with the sampled size,
instead of the paint size again, when checking whether we are being
painted scaled or not. For example, when stage views are scaled, our
200x200 buffer with buffer scale 2, thus content size 100x100 will
transform to a 200x200 paint command, thus passing the test. For
non-scaled stage views, our 200x200 buffer with buffer scale 2 thus
content size 100x100 will also transform into a 200x200 paint command,
and will also pass the check, as the texture sample region is still
200x200.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/804https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1124
clutter_paint_node_get_framebuffer() fell back on
cogl_get_draw_framebuffer() when the root node didn't have a custom
get_framebuffer vfunc. As this relies on deprecated implicit Cogl stack
API, it needs to go away, so handle this in the caller that knows more
about the context.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
When painting, actors rely on semi global state tracked by the state to
get various things needed for painting, such as the current draw
framebuffer. Having state hidden in such ways can be very deceiving as
it's hard to follow changes spread out, and adding more and more state
that should be tracked during a paint gets annoying as they will not
change in isolation but one by one in their own places. To do this
better, introduce a paint context that is passed along in paint calls
that contains the necessary state needed during painting.
The paint context implements a framebuffer stack just as Cogl works,
which is currently needed for offscreen rendering used by clutter.
The same context is passed around for paint nodes, contents and effects
as well.
In this commit, the context is only introduced, but not used. It aims to
replace the Cogl framebuffer stack, and will allow actors to know what
view it is currently painted on.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
This was wrongly introduced in 75cffd0ec4. As the comment above explains, we
only want to queue redraws in response to surface/buffer damage.
This triggered a full redraw when using DMA buffers on Wayland as we currently
create a new texture on every buffer_attach(), breaking partial invalidation.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/947
As the first step into removing Cogl types that are covered by
Graphene, remove CoglEuler and replace it by graphene_euler_t.
This is a mostly straightforward replacement, except that the
naming conventions changed a bit. Cogl uses "heading" for the
Y axis, "pitch" for the X axis, and "roll" for the Z axis, and
graphene uses the axis themselves. That means the 1st and 2nd
arguments need to be swapped.
Also adapt the matrix stack to store a graphene_euler_t in the
rotation node -- that simplifies the code a bit as well.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/458
Move out updating of various shapes (input, opaque, shape) indirectly
from X11 to the corresponding X11 sub types of MetaWindowActor and
MetaSurfaceActor.
Also move fullscreen window unredirection code with it. We want to
effectively do something similar for MetaCompositorServer, but it will
work differently enough not to share too much logic.
While it would have been nice to move things piece by piece, things were
too intertwined to make it feasible.
This has the side effect fixing accidentally and arbitrarily adding
server side shadow to Wayland surfaces.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/727https://gitlab.gnome.org/GNOME/mutter/merge_requests/734
It is opaque if the texture has no alpha channel, or if the opaque
region covers the whole content.
Internally uses a function that checks whether there is an alpha
channel. This API will be exposed at a later time as well.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/734
There were multiple bugs present after the ClutterContent transition.
Refactor `get_image` to:
- always assume surface coordinates for the clip
- return a cairo_surface in buffer size
- make the offscreen path take size arguments, so we can
easily change the assumption in get_image
- fix some clipping bugs on the way
https://gitlab.gnome.org/GNOME/mutter/merge_requests/758
Now that MetaShapedTexture is not a ClutterActor anymore, it does
not make sense to make it a MetaCullable semi-implementation. This
is, naturally, a responsibility of MetaSurfaceActor, since now
MetaShapedTexture is a ClutterContent and as such, it only cares
about what to draw.
Move the MetaCullable implementation of MetaShapedTexture to
MetaSurfaceActor.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
By implementing ClutterContent, it is expected that
MetaShapedTexture can draw on any actor. However,
right now this is not possible, since it assumes
that the drawing coordinates and sizes of the actor
are synchronized with its own reported width and
height.
It mistakenly draws, for example, when setting an
actor's content to it. There is no way to trigger
this wrong behavior right now, but it will become
a problem in the future where we can collect the
paint nodes of MetaShapedTexture as part of other
ClutterContent implementations.
Use the allocation box passed by the actor to draw
the pipelines of MetaShapedTexture.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
MetaWindowActor is the compositor-side representative of a
MetaWindow. Specifically it represents the geometry of the
window under Clutter scene graph. MetaWindowActors are backed
by MetaSurfaceActors, that represent the windowing system's
surfaces themselves. Naturally, these surfaces have textures
with the pixel content of the clients associated with them.
These textures are represented by MetaShapedTexture.
MetaShapedTextures are currently implemented as ClutterActor
subclasses that override the paint function to paint the
textures it holds.
Conceptually, however, Clutter has an abstraction layer for
contents of actors: ClutterContent. Which MetaShapedTexture
fits nicely, in fact.
Make MetaShapedTexture a ClutterContent implementation. This
forces a few changes in the stack:
* MetaShapedTexture now handles buffer scale.
* We now paint into ClutterPaintNode instead of the direct
framebuffer.
* Various pieces of Wayland code now use MetaSurfaceActor
instead of MetaShapedTexture.
* MetaSurfaceActorWayland doesn't override size negotiation
vfuncs anymore
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
This reverts a change introduced in edfe5cc3 to use `paint_clipped_rectangle()`
instead of `cogl_framebuffer_draw_rectangle()` for full paints as it
contained logic necessary for viewport src-rects. This is not longer the case.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/504
This brings the viewport src-rect code in line with how we handle
transforms, by applying a `CoglMatrix` to the pipeline instead of
changing the paint logic.
It also fixes not-y-inverted textures in combination with
transforms.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/504
There are most likely no GNOME users left still using hardware that
does not support NPOT textures. Further more, they would crash much
earlier and never hit this code-path. So remove the unnecessary check
here.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/447
This implements the viewporter protocol which offers a cropping and scaling
capabilities to wayland clients.
There are several use cases for this, for example video players and games,
both as a convenience function and as potential performance optimization when
paired with hardware overlays etc.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/323
The texture tower can return no texture e.g. if the calculated level is
negative. This was handled before, but regressed with
e1370ee209. This fixes a potential crash
observed occasionally when starting Firefox nightly using the Wayland
backend in overview mode.
EGLStream textures are imported as GL_TEXTURE_EXTERNAL_OES and reading
pixels directly from them is not supported. To make it possible to get
pixels, create an offscreen framebuffer and paint the actor to it, then
read pixels from the framebuffer instead of the texture directly.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/362
When a texture is transformed in any way (e.g. Wayland buffer
transforms), we cannot just fetch the pixels from the texture directly
and be done with it, as that will result in getting the untransformed
pixels.
To properly get the pixels in their right form, first draw to an
offscreen framebuffer, using the same method as when painting on the
stage, then read from the framebuffer into a cairo image surface.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/362
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/408
This adds the necessary bits to support Wayland buffer transforms.
The main part here is to properly setup the Cogl pipeline
and to recalculate the size of the painted area accordingly,
so culling etc. still works.
The choosen approach additionally lays groundwork for Wayland
wp_viewporter support.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/322
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.