Using cogl_rectangle (and thus the journal) in
_cogl_add_path_to_stencil_buffer means we have to consider all the state
that the journal may change in case it may interfer with the direct GL calls
used. This has proven to be error prone and in this case the journal is an
unnecissary overhead. We now simply call glRectf instead of using
cogl_rectangle.
Previously the journal was always flushed at the end of
_cogl_rectangles_with_multitexture_coords, (i.e. the end of any
cogl_rectangle* calls) but now we have broadened the potential for batching
geometry. In ideal circumstances we will only flush once per scene.
In summary the journal works like this:
When you use any of the cogl_rectangle* APIs then nothing is emitted to the
GPU at this point, we just log one or more quads into the journal. A
journal entry consists of the quad coordinates, an associated material
reference, and a modelview matrix. Ideally the journal only gets flushed
once at the end of a scene, but in fact there are things to consider that
may cause unwanted flushing, including:
- modifying materials mid-scene
This is because each quad in the journal has an associated material
reference (i.e. not copy), so if you try and modify a material that is
already referenced in the journal we force a flush first)
NOTE: For now this means you should avoid using cogl_set_source_color()
since that currently uses a single shared material. Later we
should change it to use a pool of materials that is recycled
when the journal is flushed.
- modifying any state that isn't currently logged, such as depth, fog and
backface culling enables.
The first thing that happens when flushing, is to upload all the vertex data
associated with the journal into a single VBO.
We then go through a process of splitting up the journal into batches that
have compatible state so they can be emitted to the GPU together. This is
currently broken up into 3 levels so we can stagger the state changes:
1) we break the journal up according to changes in the number of material layers
associated with logged quads. The number of layers in a material determines
the stride of the associated vertices, so we have to update our vertex
array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc)
2) we further split batches up according to material compatability. (e.g.
materials with different textures) We flush material state at this level.
3) Finally we split batches up according to modelview changes. At this level
we update the modelview matrix and actually emit the actual draw command.
This commit is largely about putting the initial design in-place; this will be
followed by other changes that take advantage of the extended batching.
Previously this was RGBA_8888. It souldn't really make a difference but for
consistency we expect almost all textures in use to have an internaly
premultiplied pixel format.
_cogl_texture_download_from_gl needs to create transient CoglBitmaps when
downloading sliced textures from GL, and then copies these as subregions
into the final target_bitmap. _cogl_texture_download_from_gl also supports
target_bitmaps with a different format to the source CoglTexture being
downloaded.
The problem was that in the case of slice textures we were always looking
at the format of the CoglTexture, not of the target_bitmap when setting
up the transient slice bitmap.
Cogl already add similar defines but with the CLUTTER namespace
(CLUTTER_COGL_HAS_GL and CLUTTER_COGL_HAS_GLES). Let's just add two
similar defines with the COGL namespace. Removing the CLUTTER_COGL ones
could break applications silently for no real good reason.
In order to be ready for the next major version of GLib we need to
disable single header inclusion by using the G_DISABLE_SINGLE_INCLUDES
define in the build process.
My patch to choose a premultiplied format when the user gives
COGL_PIXEL_FORMAT_ANY for the internal_format broke the case where the data
in question doesn't have and alpha channel.
This was accidentally missed when merging the premultiplication branch
since I merged a local version of the branch that missed this commit.
We don't want to force texture data to be premultipled if the user
explicitly specifies a non premultiplied internal_format such as
COGL_PIXEL_FORMAT_RGBA_8888. So now Cogl will only automatically
premultiply data when COGL_PIXEL_FORMAT_ANY is given for the
internal_format, or a premultiplied internal format such as
COGL_PIXEL_FORMAT_RGBA_8888_PRE is requested but non-premultiplied source
data is given.
This approach is consistent with OpenVG image formats which have already
influenced Cogl's pixel format semantics.
Many operations, like mixing two textures together or alpha-blending
onto a destination with alpha, are done most logically if texture data
is in premultiplied form. We also have many sources of premultiplied
texture data, like X pixmaps, FBOs, cairo surfaces. Rather than trying
to work with two different types of texture data, simplify things by
always premultiplying texture data before uploading to GL.
Because the default blend function is changed to accommodate this,
uses of pure-color CoglMaterial need to be adapted to add
premultiplication.
gl/cogl-texture.c gles/cogl-texture.c: Always premultiply
non-premultiplied texture data before uploading to GL.
cogl-material.c cogl-material.h: Switch the default blend functions
to ONE, ONE_MINUS_SRC_ALPHA so they work correctly with premultiplied
data.
cogl.c: Make cogl_set_source_color() premultiply the color.
cogl.h.in color-material.h: Add some documentation about
premultiplication and its interaction with color values.
cogl-pango-render.c clutter-texture.c tests/interactive/test-cogl-offscreen.c:
Use premultiplied colors.
http://bugzilla.openedhand.com/show_bug.cgi?id=1406
Signed-off-by: Robert Bragg <robert@linux.intel.com>
Otherwise if there is an error before the slices are created it will
try to free the first_pixels array and crash.
It now also checks whether first_pixels has been created before using
it to update the mipmaps. This should only happen for
cogl_texture_new_from_foreign and doesn't matter if the FBO extension
is available. It would be better in this case to fetch the first pixel
using glGetTexImage as Owen mentioned in the last commit.
tex->first_pixels was never set for foreign textures, leading
to a crash when the texture object is freed.
As a quick fix, simply set to NULL. A more complete fix would
require remembering if we had ever seen the first pixel uploaded,
and if not, doing a glReadPixel to get it before triggering the
mipmap update.
http://bugzilla.openedhand.com/show_bug.cgi?id=1645
Signed-off-by: Neil Roberts <neil@linux.intel.com>
* 1.0-integration: (138 commits)
[x11] Disable XInput by default
[xinput] Invert the XI extension version check
[cogl-primitives] Fix an unused variable warning when building GLES
[clutter-stage-egl] Pass -1,-1 to clutter_stage_x11_fix_window_size
Update the GLES backend to have the layer filters in the material
[gles/cogl-shader] Add a missing semicolon
[cogl] Move the texture filters to be a property of the material layer
[text] Fix Pango unit to pixels conversion
[actor] Force unrealization on destroy only for non-toplevels
[x11] Rework map/unmap and resizing
[xinput] Check for the XInput entry points
[units] Validate units against the ParamSpec
[actor] Add the ::allocation-changed signal
[actor] Use flags to control allocations
[units] Rework Units into logical distance value
Remove a stray g_value_get_int()
Remove usage of Units and macros
[cogl-material] Allow setting a layer with an invalid texture handle
[timeline] Remove the concept of frames from timelines
[gles/cogl-shader] Fix parameter spec for cogl_shader_get_info_log
...
Conflicts:
configure.ac
The texture filters are now a property of the material layer rather
than the texture object. Whenever a texture is painted with a material
it sets the filters on all of the GL textures in the Cogl texture. The
filter is cached so that it won't be changed unnecessarily.
The automatic mipmap generation has changed so that the mipmaps are
only generated when the texture is painted instead of every time the
data changes. Changing the texture sets a flag to mark that the
mipmaps are dirty. This works better if the FBO extension is available
because we can use glGenerateMipmap. If the extension is not available
it will temporarily enable automatic mipmap generation and reupload
the first pixel of each slice. This requires tracking the data for the
first pixel.
The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with
COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to
auto-mipmapping. The mipmap generation is now effectively free if you
are not using a mipmap filter mode so you would only want to disable
it if you had some special reason to generate your own mipmaps.
ClutterTexture no longer has to store its own copy of the filter
mode. Instead it stores it in the material and the property is
directly set and read from that. This fixes problems with the filters
getting out of sync when a cogl handle is set on the texture
directly. It also avoids the mess of having to rerealize the texture
if the filter quality changes to HIGH because Cogl will take of
generating the mipmaps if needed.
When creating a Cogl texture from a Cogl bitmap it would steal the
data by setting the bitmap_owner flag and clearing the data pointer
from the bitmap. The data would be freed by the time the
new_from_bitmap is finished. There is no reason to do this because the
data will be freed when the Cogl bitmap is unref'd and it is confusing
not to be able to reuse the bitmap for creating multiple textures.
The cogl_shader_get_info_log() function is very inconvenient for
language bindings and for regular use, as it requires a static
buffer to be filled -- basically just providing a wrapper around
glGetInfoLogARB().
Since COGL aims to be a more convenient API than raw GL we should
just make cogl_shader_get_info_log() return an allocated string
with the GLSL compiler log.
Instead of using GL_TRIANGLES and uploading the indices every time, it
now uses GL_QUADS instead on OpenGL. Under GLES it still uses indices
but it uses the new cogl_vertex_buffer_indices_get_for_quads function
to avoid uploading the vertices every time.
This requires the _cogl_vertex_buffer_indices_pointer_from_handle
function to be exposed privately to the rest of Cogl.
The static_indices array has been removed from the Cogl context.
This function can be used as an efficient way of drawing groups of
quads without using GL_QUADS. It generates a VBO containing the
indices needed to render using pairs of GL_TRIANGLES. The VBO is
globally cached so that it only needs to be uploaded whenever more
indices are requested than ever before.
The libclutter-cogl internal object should be the only dependency
for Clutter, since we are already copying it inside clutter/cogl
for the introspection scanner. For this reason, the backend-specific,
real internal object should be built with the backend encoded into
the file name, like libclutter-common. This makes the build output
a little bit more clear: instead of having two:
LINK libclutter-cogl-common.la
...
LINK libclutter-cogl.la
LINK libclutter-cogl.la
We'll have:
LINK libclutter-cogl-common.la
...
LINK libclutter-cogl-gl.la
LINK libclutter-cogl.la
Same applies for the GLES backend.
cogl_create_context is dealt with internally when _cogl_get_default context
is called, and cogl_destroy_context is currently never called.
It might be nicer later to get an object back when creating a context so
Cogl can support multiple contexts, so these functions are being removed
from the API until we get a chance to address context management properly.
For now cogl_destroy_context is still exported as _cogl_destroy_context so
Clutter could at least install a library deinit handler to call it.
There were a number of functions intended to support creating of new
primitives using materials, but at this point they aren't used outside of
Cogl so until someone has a usecase and we can get feedback on this
API, it's being removed before we release Clutter 1.0.
Setting up layer combine functions and blend modes is very awkward to do
programatically. This adds a parser for string based descriptions which are
more consise and readable.
E.g. a material layer combine function could now be given as:
"RGBA = ADD (TEXTURE[A], PREVIOUS[RGB])"
or
"RGB = REPLACE (PREVIOUS)"
"A = MODULATE (PREVIOUS, TEXTURE)"
The simple syntax and grammar are only designed to expose standard fixed
function hardware, more advanced combining must be done with shaders.
This includes standalone documentation of blend strings covering the aspects
that are common to blending and texture combining, and adds documentation
with examples specific to the new cogl_material_set_blend() and
cogl_material_layer_set_combine() functions.
Note: The hope is to remove the now redundant bits of the material API
before 1.0
The CoglTexture constructors expose the "max-waste" argument for
controlling the maximum amount of wasted areas for slicing or,
if set to -1, disables slicing.
Slicing is really relevant only for large images that are never
repeated, so it's a useful feature only in controlled use cases.
Specifying the amount of wasted area is, on the other hand, just
a way to mess up this feature; 99% the times, you either pull this
number out of thin air, hoping it's right, or you try to do the
right thing and you choose the wrong number anyway.
Instead, we can use the CoglTextureFlags to control whether the
texture should not be sliced (useful for Clutter-GST and for the
texture-from-pixmap actors) and provide a reasonable value for
enabling the slicing ourself. At some point, we might even
provide a way to change the default at compile time or at run time,
for particular platforms.
Since max_waste is gone, the :tile-waste property of ClutterTexture
becomes read-only, and it proxies the cogl_texture_get_max_waste()
function.
Inside Clutter, the only cases where the max_waste argument was
not set to -1 are in the Pango glyph cache (which is a POT texture
anyway) and inside the test cases where we want to force slicing;
for the latter we can create larger textures that will be bigger than
the threshold we set.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Signed-off-by: Robert Bragg <robert@linux.intel.com>
Signed-off-by: Neil Roberts <neil@linux.intel.com>
Currently, COGL depends on defining debug symbols by manually
modifying the source code. When it's done, it will forcefully
print stuff to the console.
Since COGL has also a pretty, runtime selectable debugging API
we might as well switch everything to it.
In order for this to happen, configure needs a new:
--enable-cogl-debug
command line switch; this will enable COGL debugging, the
CoglHandle debugging and will also turn on the error checking
for each GL operation.
The default setting for the COGL debug defines is off, since
it slows down the GL operations; enabling it for a particular
debug build is trivial, though.
COGL has a debug message system like Clutter's own. In parallel,
it also uses a coupld of #defines. Spread around there are also
calls to printf() instead to the more correct g_log* wrappers.
This commit tries to unify and clean up the macros and the
debug message handling inside COGL to be more consistent.
We use math routines inside Cogl, so it's correct to have it in
the LIBADD line. In normal usage something else was pulling in
-lm, but the introspection is relying on linking against the
convenience library.
Based on a patch by: Colin Walters <walters@verbum.org>
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
COGLenum, COGLint and COGLuint which were simply typedefs for GL{enum,int,uint}
have been removed from the API and replaced with specialised enum typedefs, int
and unsigned int. These were causing problems for generating bindings and also
considered poor style.
The cogl texture filter defines CGL_NEAREST and CGL_LINEAR etc are now replaced
by a namespaced typedef 'CoglTextureFilter' so they should be replaced with
COGL_TEXTURE_FILTER_NEAREST and COGL_TEXTURE_FILTER_LINEAR etc.
The shader type defines CGL_VERTEX_SHADER and CGL_FRAGMENT_SHADER are handled by
a CoglShaderType typedef and should be replaced with COGL_SHADER_TYPE_VERTEX and
COGL_SHADER_TYPE_FRAGMENT.
cogl_shader_get_parameteriv has been replaced by cogl_shader_get_type and
cogl_shader_is_compiled. More getters can be added later if desired.
Commit 43fa38fcf5 broke out-of-tree builds by removing some of the
builddir directories from the include path. builddir/clutter/cogl and
builddir/clutter are needed because cogl.h and cogl-defines-gl.h are
automatically generated by the configure script. The main clutter
headers are in the srcdir so this needs to be in the path too.
There were several functions I believe no one is currently using that were
only implemented in the GL backend (cogl_offscreen_blit_region and
cogl_offscreen_blit) that have simply been removed so we have a chance to
think about design later with a real use case.
There was one nonsense function (cogl_offscreen_new_multisample) that
sounded exciting but in all cases it just returned COGL_INVALID_HANDLE
(though at least for GL it checked for multisampling support first!?)
it has also been removed.
The MASK draw buffer type has been removed. If we want to expose color
masking later then I think it at least would be nicer to have the mask be a
property that can be set on any draw buffer.
The cogl_draw_buffer and cogl_{push,pop}_draw_buffer function prototypes
have been moved up into cogl.h since they are for managing global Cogl state
and not for modifying or creating the actual offscreen buffers.
This also documents the API so for example desiphering the semantics of
cogl_offscreen_new_to_texture() should be a bit easier now.
These are necessary if nesting redirections to an fbo,
otherwise there's no way to know how to restore
previous state.
glPushAttrib(GL_COLOR_BUFFER_BIT) would save draw buffer
state, but also saves a lot of other stuff, and
cogl_draw_buffer() relies on knowing about all draw
buffer state changes. So we have to implement a
draw buffer stack ourselves.
Signed-off-by: Robert Bragg <robert@linux.intel.com>
Adds missing notices, and ensures all the notices are consistent. The Cogl
blurb also now reads:
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
In unifying the {gl,gles}/cogl.c code recently, moving most of the code into
common/cogl.c the gmodule.h include was also mistakenly moved.
Thanks to Felix Rabe for reporting this issue.
Note: I haven't tested this fix myself, as I'm not set up to be able to
build for OS X
The cogl_is_* functions were showing up quite high on profiles due to
iterating through arrays of cogl handles.
This does away with all the handle arrays and implements a simple struct
inheritance scheme. All cogl objects now add a CoglHandleObject _parent;
member to their main structures. The base object includes 2 members a.t.m; a
ref_count, and a klass pointer. The klass in turn gives you a type and
virtual function for freeing objects of that type.
Each handle type has a _cogl_##handle_type##_get_type () function
automatically defined which returns a GQuark of the handle type, so now
implementing the cogl_is_* funcs is just a case of comparing with
obj->klass->type.
Another outcome of the re-work is that cogl_handle_{ref,unref} are also much
more efficient, and no longer need extending for each handle type added to
cogl. The cogl_##handle_type##_{ref,unref} functions are now deprecated and
are no longer used internally to Clutter or Cogl. Potentially we can remove
them completely before 1.0.
None of this code directly related to implementing CoglTextures, and the
code was needlessly duplicated between the GL and GLES backends. This moves
the cogl_rectangle* and cogl_polygon* code into common/cogl-primitives.c
makes which makes lot of sense since the two copies keep needlessly
diverging introducing or fixing bugs in one but not the other. For instance
I came accross one such bug regarding the enabling of texture units when
unifying the code.
It's often nice to be able to draw a batch of vertices, even if these
have no texture coordinates. This add a cogl_rectangles, similar to
cogl_rectangles_with_texture_coords, only without.
There are various constraints for when we can support multi-texturing and
when they can't be met we try and print a clear warning explaining why the
operation isn't supported, but we shouldn't endlessly repeat the warning for
every primitive of every frame. This patch fixes that.
_cogl_add_path_to_stencil_buffer and _cogl_add_stencil_clip were leaving
the projection matrix current when calling cogl_rectangle which was
upsetting _cogl_current_matrix_state_flush.
This is useful because sometimes we need to get the current matrix, which
is too expensive when indirect rendering.
In addition, this virtualization makes it easier to clean up the API in
the future.