mutter/cogl/driver/gles/cogl-gles2-wrapper.c

992 lines
27 KiB
C
Raw Normal View History

GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
/*
* Cogl
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
*
* An object oriented GL/GLES Abstraction/Utility Layer
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
*
* Copyright (C) 2008,2009 Intel Corporation.
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string.h>
#include <math.h>
/* We don't want to get the remaps from the gl* functions to the
cogl_wrap_gl* functions in this file because we need to be able to
call the base version */
#define COGL_GLES2_WRAPPER_NO_REMAP 1
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
#include "cogl.h"
#include "cogl-gles2-wrapper.h"
#include "cogl-fixed-vertex-shader.h"
#include "cogl-context.h"
#include "cogl-shader-private.h"
#include "cogl-shader.h"
#include "cogl-internal.h"
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
#define _COGL_GET_GLES2_WRAPPER(wvar, retval) \
CoglGles2Wrapper *wvar; \
{ \
CoglContext *__ctxvar = _cogl_context_get_default (); \
if (__ctxvar == NULL) return retval; \
wvar = &__ctxvar->drv.gles2; \
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
#define _COGL_GLES2_CHANGE_SETTING(w, var, val) \
do \
if ((w)->settings.var != (val)) \
{ \
(w)->settings.var = (val); \
(w)->settings_dirty = TRUE; \
} \
while (0)
#define _COGL_GLES2_CHANGE_UNIFORM(w, flag, var, val) \
do \
if ((w)->var != (val)) \
{ \
(w)->var = (val); \
(w)->dirty_uniforms |= COGL_GLES2_DIRTY_ ## flag; \
} \
while (0)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
#define COGL_GLES2_WRAPPER_VERTEX_ATTRIB 0
#define COGL_GLES2_WRAPPER_COLOR_ATTRIB 1
#define COGL_GLES2_WRAPPER_NORMAL_ATTRIB 2
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
static GLuint
cogl_gles2_wrapper_create_shader (GLenum type, const char *source)
{
GLuint shader;
GLint source_len = strlen (source);
GLint status;
shader = glCreateShader (type);
glShaderSource (shader, 1, &source, &source_len);
glCompileShader (shader);
glGetShaderiv (shader, GL_COMPILE_STATUS, &status);
if (!status)
{
char shader_log[1024];
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
GLint len;
glGetShaderInfoLog (shader, sizeof (shader_log) - 1, &len, shader_log);
shader_log[len] = '\0';
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
g_critical ("%s", shader_log);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
glDeleteShader (shader);
return 0;
}
return shader;
}
static void
initialize_texture_units (CoglGles2Wrapper *w)
{
/* We save the active texture unit since we may need to temporarily
* change this to initialise each new texture unit and we want to
* restore the active unit afterwards */
int initial_active_unit = w->active_texture_unit;
GLint prev_mode;
int i;
/* We will need to set the matrix mode to GL_TEXTURE to
* initialise any new texture units, so we save the current
* mode for restoring afterwards */
GE( _cogl_wrap_glGetIntegerv (GL_MATRIX_MODE, &prev_mode));
for (i = 0; i < COGL_GLES2_MAX_TEXTURE_UNITS; i++)
{
CoglGles2WrapperTextureUnit *new_unit;
new_unit = w->texture_units + i;
memset (new_unit, 0, sizeof (CoglGles2WrapperTextureUnit));
w->active_texture_unit = i;
GE( _cogl_wrap_glMatrixMode (GL_TEXTURE));
GE( _cogl_wrap_glLoadIdentity ());
}
GE( _cogl_wrap_glMatrixMode ((GLenum) prev_mode));
w->settings.texture_units = 0;
w->active_texture_unit = initial_active_unit;
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
void
_cogl_gles2_wrapper_init (CoglGles2Wrapper *wrapper)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
memset (wrapper, 0, sizeof (CoglGles2Wrapper));
/* Initialize the stacks */
_cogl_wrap_glMatrixMode (GL_PROJECTION);
_cogl_wrap_glLoadIdentity ();
_cogl_wrap_glMatrixMode (GL_MODELVIEW);
_cogl_wrap_glLoadIdentity ();
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
/* The gl*ActiveTexture wrappers will initialise the texture
* stack for the texture unit when it's first activated */
_cogl_wrap_glActiveTexture (GL_TEXTURE0);
_cogl_wrap_glClientActiveTexture (GL_TEXTURE0);
/* Initialize the point size */
_cogl_wrap_glPointSize (1.0f);
initialize_texture_units (wrapper);
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
static gboolean
cogl_gles2_settings_equal (const CoglGles2WrapperSettings *a,
const CoglGles2WrapperSettings *b)
{
if (a->texture_units != b->texture_units)
return FALSE;
return TRUE;
}
static CoglGles2WrapperShader *
cogl_gles2_get_vertex_shader (const CoglGles2WrapperSettings *settings)
{
GString *shader_source;
GLuint shader_obj;
CoglGles2WrapperShader *shader;
GSList *node;
int i;
int n_texture_units = 0;
_COGL_GET_GLES2_WRAPPER (w, NULL);
/* Check if we already have a vertex shader for these settings */
for (node = w->compiled_vertex_shaders; node; node = node->next)
if (cogl_gles2_settings_equal (settings,
&((CoglGles2WrapperShader *)
node->data)->settings))
return (CoglGles2WrapperShader *) node->data;
/* Otherwise create a new shader */
shader_source = g_string_new (_cogl_fixed_vertex_shader_per_vertex_attribs);
for (i = 0; i < COGL_GLES2_MAX_TEXTURE_UNITS; i++)
if (COGL_GLES2_TEXTURE_UNIT_IS_ENABLED (settings->texture_units, i))
g_string_append_printf (shader_source,
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
"attribute vec4 cogl_tex_coord%d_in;\n",
i);
/* Find the biggest enabled texture unit index */
for (i = 0; i < COGL_GLES2_MAX_TEXTURE_UNITS; i++)
if (COGL_GLES2_TEXTURE_UNIT_IS_ENABLED (settings->texture_units, i))
n_texture_units = i + 1;
g_string_append (shader_source, _cogl_fixed_vertex_shader_transform_matrices);
g_string_append (shader_source, _cogl_fixed_vertex_shader_output_variables);
if (n_texture_units > 0)
{
g_string_append_printf (shader_source,
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
"uniform mat4 cogl_texture_matrix[%d];\n",
n_texture_units);
g_string_append_printf (shader_source,
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
"varying vec2 _cogl_tex_coord[%d];",
n_texture_units);
}
g_string_append (shader_source, _cogl_fixed_vertex_shader_fogging_options);
g_string_append (shader_source, _cogl_fixed_vertex_shader_main_start);
for (i = 0; i < COGL_GLES2_MAX_TEXTURE_UNITS; i++)
if (COGL_GLES2_TEXTURE_UNIT_IS_ENABLED (settings->texture_units, i))
{
g_string_append_printf (shader_source,
"transformed_tex_coord = "
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
"cogl_texture_matrix[%d] "
" * cogl_tex_coord%d_in;\n",
i, i);
g_string_append_printf (shader_source,
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
"_cogl_tex_coord[%d] = transformed_tex_coord.st "
" / transformed_tex_coord.q;\n",
i);
}
g_string_append (shader_source, _cogl_fixed_vertex_shader_frag_color_start);
g_string_append (shader_source, _cogl_fixed_vertex_shader_end);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
shader_obj = cogl_gles2_wrapper_create_shader (GL_VERTEX_SHADER,
shader_source->str);
g_string_free (shader_source, TRUE);
if (shader_obj == 0)
return NULL;
shader = g_slice_new (CoglGles2WrapperShader);
shader->shader = shader_obj;
shader->settings = *settings;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
w->compiled_vertex_shaders = g_slist_prepend (w->compiled_vertex_shaders,
shader);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
return shader;
}
static void
cogl_gles2_wrapper_get_locations (GLuint program,
CoglGles2WrapperSettings *settings,
CoglGles2WrapperUniforms *uniforms,
CoglGles2WrapperAttributes *attribs)
{
int i;
uniforms->mvp_matrix_uniform
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
= glGetUniformLocation (program, "cogl_modelview_projection_matrix");
uniforms->modelview_matrix_uniform
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
= glGetUniformLocation (program, "cogl_modelview_matrix");
for (i = 0; i < COGL_GLES2_MAX_TEXTURE_UNITS; i++)
{
char *matrix_var_name = g_strdup_printf ("cogl_texture_matrix[%d]", i);
char *tex_coord_var_name =
g_strdup_printf ("cogl_tex_coord%d_in", i);
uniforms->texture_matrix_uniforms[i]
= glGetUniformLocation (program, matrix_var_name);
attribs->multi_texture_coords[i]
= glGetAttribLocation (program, tex_coord_var_name);
g_free (tex_coord_var_name);
g_free (matrix_var_name);
}
uniforms->point_size_uniform
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
= glGetUniformLocation (program, "cogl_point_size_in");
}
static void
cogl_gles2_wrapper_bind_attributes (GLuint program)
{
glBindAttribLocation (program, COGL_GLES2_WRAPPER_VERTEX_ATTRIB,
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
"cogl_position_in");
glBindAttribLocation (program, COGL_GLES2_WRAPPER_COLOR_ATTRIB,
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
"cogl_color_in");
glBindAttribLocation (program, COGL_GLES2_WRAPPER_NORMAL_ATTRIB,
cogl-shader: Prepend boilerplate for portable shaders We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing
2010-07-23 16:46:41 +00:00
"cogl_normal_in");
}
static CoglGles2WrapperProgram *
cogl_gles2_wrapper_get_program (const CoglGles2WrapperSettings *settings)
{
GSList *node;
CoglGles2WrapperProgram *program;
CoglGles2WrapperShader *vertex_shader;
GLint status;
gboolean custom_vertex_shader = FALSE, custom_fragment_shader = FALSE;
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
GLuint shaders[16];
GLsizei n_shaders = 0;
int i;
_COGL_GET_GLES2_WRAPPER (w, NULL);
/* Check if we've already got a program for these settings */
for (node = w->compiled_programs; node; node = node->next)
{
program = (CoglGles2WrapperProgram *) node->data;
if (cogl_gles2_settings_equal (settings, &program->settings)
&& program->settings.user_program == settings->user_program)
return (CoglGles2WrapperProgram *) node->data;
}
/* Otherwise create a new program */
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
if (settings->user_program)
{
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
/* We work out whether the program contains a vertex and
fragment shader by looking at the list of attached shaders */
glGetAttachedShaders (settings->user_program,
G_N_ELEMENTS (shaders),
&n_shaders, shaders);
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
for (i = 0; i < n_shaders; i++)
{
GLint shader_type;
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
glGetShaderiv (shaders[i], GL_SHADER_TYPE, &shader_type);
if (shader_type == GL_VERTEX_SHADER)
custom_vertex_shader = TRUE;
else if (shader_type == GL_FRAGMENT_SHADER)
custom_fragment_shader = TRUE;
}
}
/* We should always have a custom shaders because the pipeline
backend should create them for us */
g_assert (custom_fragment_shader);
g_assert (custom_vertex_shader);
/* Get or create the fixed functionality shaders for these settings
if there is no custom replacement */
if (!custom_vertex_shader)
{
vertex_shader = cogl_gles2_get_vertex_shader (settings);
if (vertex_shader == NULL)
return NULL;
}
program = g_slice_new (CoglGles2WrapperProgram);
program->program = settings->user_program;
if (!custom_vertex_shader)
glAttachShader (program->program, vertex_shader->shader);
cogl_gles2_wrapper_bind_attributes (program->program);
glLinkProgram (program->program);
glGetProgramiv (program->program, GL_LINK_STATUS, &status);
if (!status)
{
char shader_log[1024];
GLint len;
glGetProgramInfoLog (program->program, sizeof (shader_log) - 1, &len, shader_log);
shader_log[len] = '\0';
g_critical ("%s", shader_log);
g_slice_free (CoglGles2WrapperProgram, program);
return NULL;
}
program->settings = *settings;
cogl_gles2_wrapper_get_locations (program->program,
&program->settings,
&program->uniforms,
&program->attributes);
w->compiled_programs = g_slist_append (w->compiled_programs, program);
return program;
2008-06-02 10:58:57 +00:00
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
void
_cogl_gles2_wrapper_deinit (CoglGles2Wrapper *wrapper)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
GSList *node, *next;
for (node = wrapper->compiled_programs; node; node = next)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
next = node->next;
g_slist_free1 (node);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
wrapper->compiled_programs = NULL;
for (node = wrapper->compiled_vertex_shaders; node; node = next)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
next = node->next;
glDeleteShader (((CoglGles2WrapperShader *) node->data)->shader);
g_slist_free1 (node);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
wrapper->compiled_vertex_shaders = NULL;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
static void
cogl_gles2_wrapper_notify_matrix_changed (CoglGles2Wrapper *wrapper,
GLenum mode)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
CoglGles2WrapperTextureUnit *texture_unit;
switch (mode)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
case GL_MODELVIEW:
wrapper->dirty_uniforms |= COGL_GLES2_DIRTY_MVP_MATRIX
| COGL_GLES2_DIRTY_MODELVIEW_MATRIX;
break;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
case GL_PROJECTION:
wrapper->dirty_uniforms |= COGL_GLES2_DIRTY_MVP_MATRIX;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
break;
case GL_TEXTURE:
wrapper->dirty_uniforms |= COGL_GLES2_DIRTY_TEXTURE_MATRICES;
texture_unit = wrapper->texture_units + wrapper->active_texture_unit;
texture_unit->dirty_matrix = 1;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
break;
default:
g_critical ("%s: Unexpected matrix mode %d\n", G_STRFUNC, mode);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
}
void
_cogl_wrap_glMatrixMode (GLenum mode)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
w->matrix_mode = mode;
}
static CoglMatrix *
cogl_gles2_get_current_matrix (CoglGles2Wrapper *wrapper)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
CoglGles2WrapperTextureUnit *texture_unit;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
switch (wrapper->matrix_mode)
{
default:
g_critical ("%s: Unexpected matrix mode %d\n",
G_STRFUNC, wrapper->matrix_mode);
/* flow through */
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
case GL_MODELVIEW:
return &wrapper->modelview_matrix;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
case GL_PROJECTION:
return &wrapper->projection_matrix;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
case GL_TEXTURE:
texture_unit = wrapper->texture_units + wrapper->active_texture_unit;
return &texture_unit->texture_matrix;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
}
void
_cogl_wrap_glLoadIdentity (void)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
CoglMatrix *matrix;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
matrix = cogl_gles2_get_current_matrix (w);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
cogl_matrix_init_identity (matrix);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
cogl_gles2_wrapper_notify_matrix_changed (w, w->matrix_mode);
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
void
_cogl_wrap_glLoadMatrixf (const GLfloat *m)
{
CoglMatrix *matrix;
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
matrix = cogl_gles2_get_current_matrix (w);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
cogl_matrix_init_from_array (matrix, m);
cogl_gles2_wrapper_notify_matrix_changed (w, w->matrix_mode);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
void
_cogl_wrap_glVertexPointer (GLint size, GLenum type, GLsizei stride,
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
const GLvoid *pointer)
{
glVertexAttribPointer (COGL_GLES2_WRAPPER_VERTEX_ATTRIB, size, type,
GL_FALSE, stride, pointer);
}
void
_cogl_wrap_glTexCoordPointer (GLint size, GLenum type, GLsizei stride,
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
const GLvoid *pointer)
{
int active_unit;
CoglGles2WrapperTextureUnit *texture_unit;
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
active_unit = w->active_client_texture_unit;
texture_unit = w->texture_units + active_unit;
texture_unit->texture_coords_size = size;
texture_unit->texture_coords_type = type;
texture_unit->texture_coords_stride = stride;
texture_unit->texture_coords_pointer = pointer;
w->dirty_attribute_pointers
|= COGL_GLES2_DIRTY_TEX_COORD_VERTEX_ATTRIB;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
void
_cogl_wrap_glColorPointer (GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
glVertexAttribPointer (COGL_GLES2_WRAPPER_COLOR_ATTRIB, size, type,
GL_TRUE, stride, pointer);
}
void
_cogl_wrap_glNormalPointer (GLenum type, GLsizei stride, const GLvoid *pointer)
{
glVertexAttribPointer (COGL_GLES2_WRAPPER_NORMAL_ATTRIB, 1, type,
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
GL_FALSE, stride, pointer);
}
static void
_cogl_wrap_prepare_for_draw (void)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
CoglGles2WrapperProgram *program;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
/* Check if we need to switch programs */
if (w->settings_dirty)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
/* Find or create a program for the current settings */
program = cogl_gles2_wrapper_get_program (&w->settings);
if (program == NULL)
/* Can't compile a shader so there is nothing we can do */
return;
/* Start using it if we aren't already */
if (w->current_program != program)
{
w->current_program = program;
/* All of the uniforms are probably now out of date */
w->dirty_uniforms = COGL_GLES2_DIRTY_ALL;
}
w->settings_dirty = FALSE;
}
else
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
program = w->current_program;
/* We always have to reassert the program even if it hasn't changed
because the fixed-function material backend disables the program
again in the _start function. This should go away once the GLSL
code is generated in the GLSL material backend so it's probably
not worth worrying about now */
_cogl_use_fragment_program (w->settings.user_program,
COGL_PIPELINE_PROGRAM_TYPE_GLSL);
_cogl_use_vertex_program (w->settings.user_program,
COGL_PIPELINE_PROGRAM_TYPE_GLSL);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
/* Make sure all of the uniforms are up to date */
if (w->dirty_uniforms)
{
if ((w->dirty_uniforms & (COGL_GLES2_DIRTY_MVP_MATRIX
| COGL_GLES2_DIRTY_MODELVIEW_MATRIX)))
{
CoglMatrix mvp_matrix;
CoglMatrix *modelview_matrix = &w->modelview_matrix;
CoglMatrix *projection_matrix = &w->projection_matrix;
/* FIXME: we should have a cogl_matrix_copy () function */
memcpy (&mvp_matrix, projection_matrix, sizeof (CoglMatrix));
cogl_matrix_multiply (&mvp_matrix, &mvp_matrix, modelview_matrix);
if (program->uniforms.mvp_matrix_uniform != -1)
glUniformMatrix4fv (program->uniforms.mvp_matrix_uniform, 1,
GL_FALSE, (float *) &mvp_matrix);
if (program->uniforms.modelview_matrix_uniform != -1)
glUniformMatrix4fv (program->uniforms.modelview_matrix_uniform, 1,
GL_FALSE, (float *) &modelview_matrix);
}
if ((w->dirty_uniforms & COGL_GLES2_DIRTY_TEXTURE_MATRICES))
{
int i;
/* TODO - we should probably have a per unit dirty flag too */
for (i = 0; i < COGL_GLES2_MAX_TEXTURE_UNITS; i++)
{
CoglGles2WrapperTextureUnit *texture_unit;
GLint uniform = program->uniforms.texture_matrix_uniforms[i];
texture_unit = w->texture_units + i;
if (uniform != -1)
glUniformMatrix4fv (uniform, 1, GL_FALSE,
(float *) &texture_unit->texture_matrix);
}
}
if ((w->dirty_uniforms & COGL_GLES2_DIRTY_POINT_SIZE))
glUniform1f (program->uniforms.point_size_uniform,
w->point_size);
w->dirty_uniforms = 0;
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
if (w->dirty_attribute_pointers
& COGL_GLES2_DIRTY_TEX_COORD_VERTEX_ATTRIB)
{
int i;
/* TODO - coverage test */
for (i = 0; i < COGL_GLES2_MAX_TEXTURE_UNITS; i++)
{
GLint tex_coord_var_index;
CoglGles2WrapperTextureUnit *texture_unit;
texture_unit = w->texture_units + i;
if (!texture_unit->texture_coords_enabled)
continue;
/* TODO - we should probably have a per unit dirty flag too */
/* TODO - coverage test */
tex_coord_var_index = program->attributes.multi_texture_coords[i];
glVertexAttribPointer (tex_coord_var_index,
texture_unit->texture_coords_size,
texture_unit->texture_coords_type,
GL_FALSE,
texture_unit->texture_coords_stride,
texture_unit->texture_coords_pointer);
}
}
if (w->dirty_vertex_attrib_enables)
{
int i;
/* TODO - coverage test */
/* TODO - we should probably have a per unit dirty flag too */
for (i = 0; i < COGL_GLES2_MAX_TEXTURE_UNITS; i++)
{
CoglGles2WrapperTextureUnit *texture_unit = w->texture_units + i;
GLint attrib = program->attributes.multi_texture_coords[i];
if (attrib != -1)
{
if (texture_unit->texture_coords_enabled)
glEnableVertexAttribArray (attrib);
else
glDisableVertexAttribArray (attrib);
}
}
w->dirty_vertex_attrib_enables = 0;
}
}
void
_cogl_wrap_glDrawArrays (GLenum mode, GLint first, GLsizei count)
{
_cogl_wrap_prepare_for_draw ();
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
glDrawArrays (mode, first, count);
}
void
_cogl_wrap_glDrawElements (GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices)
{
_cogl_wrap_prepare_for_draw ();
glDrawElements (mode, count, type, indices);
}
void
_cogl_wrap_glClientActiveTexture (GLenum texture)
{
int texture_unit_index = texture - GL_TEXTURE0;
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
if (texture_unit_index < COGL_GLES2_MAX_TEXTURE_UNITS)
w->active_client_texture_unit = texture_unit_index;
}
void
_cogl_wrap_glActiveTexture (GLenum texture)
{
int texture_unit_index = texture - GL_TEXTURE0;
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
glActiveTexture (texture);
if (texture_unit_index < COGL_GLES2_MAX_TEXTURE_UNITS)
w->active_texture_unit = texture_unit_index;
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
void
_cogl_wrap_glEnable (GLenum cap)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
switch (cap)
{
case GL_TEXTURE_2D:
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 21:04:59 +00:00
case GL_TEXTURE_3D_OES:
if (!COGL_GLES2_TEXTURE_UNIT_IS_ENABLED (w->settings.texture_units,
w->active_texture_unit))
{
COGL_GLES2_TEXTURE_UNIT_SET_ENABLED (w->settings.texture_units,
w->active_texture_unit,
TRUE);
w->settings_dirty = TRUE;
}
break;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
default:
glEnable (cap);
}
}
void
_cogl_wrap_glDisable (GLenum cap)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
switch (cap)
{
case GL_TEXTURE_2D:
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 21:04:59 +00:00
case GL_TEXTURE_3D_OES:
/* If this was the last enabled texture target then we'll
completely disable the unit */
if (COGL_GLES2_TEXTURE_UNIT_IS_ENABLED (w->settings.texture_units,
w->active_texture_unit))
{
COGL_GLES2_TEXTURE_UNIT_SET_ENABLED (w->settings.texture_units,
w->active_texture_unit,
FALSE);
w->settings_dirty = TRUE;
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
break;
default:
glDisable (cap);
}
}
void
_cogl_wrap_glEnableClientState (GLenum array)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
CoglGles2WrapperTextureUnit *texture_unit;
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
switch (array)
{
case GL_VERTEX_ARRAY:
glEnableVertexAttribArray (COGL_GLES2_WRAPPER_VERTEX_ATTRIB);
break;
case GL_TEXTURE_COORD_ARRAY:
/* TODO - review if this should be in w->settings? */
texture_unit = w->texture_units + w->active_client_texture_unit;
if (texture_unit->texture_coords_enabled != 1)
{
texture_unit->texture_coords_enabled = 1;
w->dirty_vertex_attrib_enables
|= COGL_GLES2_DIRTY_TEX_COORD_ATTRIB_ENABLES;
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
break;
case GL_COLOR_ARRAY:
glEnableVertexAttribArray (COGL_GLES2_WRAPPER_COLOR_ATTRIB);
break;
case GL_NORMAL_ARRAY:
glEnableVertexAttribArray (COGL_GLES2_WRAPPER_NORMAL_ATTRIB);
break;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
}
void
_cogl_wrap_glDisableClientState (GLenum array)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
CoglGles2WrapperTextureUnit *texture_unit;
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
switch (array)
{
case GL_VERTEX_ARRAY:
glDisableVertexAttribArray (COGL_GLES2_WRAPPER_VERTEX_ATTRIB);
break;
case GL_TEXTURE_COORD_ARRAY:
texture_unit = w->texture_units + w->active_texture_unit;
/* TODO - review if this should be in w->settings? */
if (texture_unit->texture_coords_enabled != 0)
{
texture_unit->texture_coords_enabled = 0;
w->dirty_vertex_attrib_enables
|= COGL_GLES2_DIRTY_TEX_COORD_ATTRIB_ENABLES;
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
break;
case GL_COLOR_ARRAY:
glDisableVertexAttribArray (COGL_GLES2_WRAPPER_COLOR_ATTRIB);
break;
case GL_NORMAL_ARRAY:
glDisableVertexAttribArray (COGL_GLES2_WRAPPER_NORMAL_ATTRIB);
break;
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
}
void
_cogl_wrap_glColor4f (GLclampf r, GLclampf g, GLclampf b, GLclampf a)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
glVertexAttrib4f (COGL_GLES2_WRAPPER_COLOR_ATTRIB, r, g, b, a);
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
void
_cogl_wrap_glColor4ub (GLubyte r, GLubyte g, GLubyte b, GLubyte a)
{
glVertexAttrib4f (COGL_GLES2_WRAPPER_COLOR_ATTRIB,
r/255.0, g/255.0, b/255.0, a/255.0);
}
void
_cogl_wrap_glClipPlanef (GLenum plane, GLfloat *equation)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
/* FIXME */
}
void
_cogl_wrap_glGetIntegerv (GLenum pname, GLint *params)
{
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
switch (pname)
{
case GL_MAX_CLIP_PLANES:
*params = 0;
break;
case GL_MATRIX_MODE:
*params = w->matrix_mode;
break;
case GL_MAX_TEXTURE_UNITS:
glGetIntegerv (GL_MAX_TEXTURE_IMAGE_UNITS, params);
if (*params > COGL_GLES2_MAX_TEXTURE_UNITS)
*params = COGL_GLES2_MAX_TEXTURE_UNITS;
break;
default:
glGetIntegerv (pname, params);
break;
}
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
void
_cogl_wrap_glGetFloatv (GLenum pname, GLfloat *params)
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
{
CoglGles2WrapperTextureUnit *texture_unit;
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
switch (pname)
{
case GL_MODELVIEW_MATRIX:
memcpy (params, &w->modelview_matrix, sizeof (GLfloat) * 16);
break;
case GL_PROJECTION_MATRIX:
memcpy (params, &w->projection_matrix, sizeof (GLfloat) * 16);
break;
case GL_TEXTURE_MATRIX:
texture_unit = w->texture_units + w->active_texture_unit;
memcpy (params, &texture_unit->texture_matrix, sizeof (GLfloat) * 16);
break;
case GL_VIEWPORT:
glGetFloatv (GL_VIEWPORT, params);
break;
}
GLES 2 backend * clutter/eglx/clutter-stage-egl.h: * clutter/eglx/clutter-egl-headers.h: * clutter/eglx/clutter-backend-egl.h: * clutter/eglx/Makefile.am: Include the GLES and EGL headers via clutter-egl-headers.h so that the right version can be used depending on whether the GLES 2 wrapper is being used. * configure.ac: Added an automake conditional for whether the GLES 2 wrapper should be used. * clutter/eglx/clutter-stage-egl.c (clutter_stage_egl_realize): Remove the call to glGetIntegerv to get the max texture size. It was being called before the GL context was bound so it didn't work anyway and it was causing trouble for the GLES 2 simulator. * clutter/cogl/gles/stringify.sh: Shell script to convert the shaders into a C string. * clutter/cogl/gles/cogl-gles2-wrapper.h: * clutter/cogl/gles/cogl-gles2-wrapper.c: Wrappers for most of the missing GL functions in GLES 2. * clutter/cogl/gles/cogl-fixed-fragment-shader.glsl: * clutter/cogl/gles/cogl-fixed-vertex-shader.glsl: New shaders for GLES 2 * clutter/cogl/gles/cogl-defines.h.in: Use the @CLUTTER_GL_HEADER@ macro instead of always using the GLES 1 header. * clutter/cogl/gles/cogl-context.h (CoglContext): Include a field for the state of the GLES 2 wrapper. * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl.c: Use wrapped versions of the GL functions where neccessary. * clutter/cogl/gles/Makefile.am: Add sources for the GLES 2 wrapper and an extra build step to put the GLSL files into a C string whenever the files change.
2008-05-27 17:42:50 +00:00
}
void
_cogl_wrap_glTexParameteri (GLenum target, GLenum pname, GLfloat param)
{
if (pname != GL_GENERATE_MIPMAP)
glTexParameteri (target, pname, param);
}
void
_cogl_wrap_glMaterialfv (GLenum face, GLenum pname, const GLfloat *params)
{
/* FIXME: the GLES 2 backend doesn't yet support lighting so this
function can't do anything */
}
void
_cogl_wrap_glPointSize (GLfloat size)
{
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
w->point_size = size;
w->dirty_uniforms |= COGL_GLES2_DIRTY_POINT_SIZE;
}
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
/* This function is a massive hack to get custom GLSL programs to
work. It's only necessary until we move the GLSL shader generation
into the CoglMaterial. The gl_program specifies the user program to
be used. The list of shaders will be extracted out of this and
compiled into a new program containing any fixed function shaders
that need to be generated. The new program will be returned. */
GLuint
_cogl_gles2_use_program (GLuint gl_program)
{
_COGL_GET_GLES2_WRAPPER (w, 0);
_COGL_GLES2_CHANGE_SETTING (w, user_program, gl_program);
/* We need to bind the program immediately so that the GLSL material
backend can update the custom uniforms */
_cogl_wrap_prepare_for_draw ();
return w->current_program->program;
}
void
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
_cogl_gles2_clear_cache_for_program (GLuint gl_program)
{
GSList *node, *next, *last = NULL;
CoglGles2WrapperProgram *program;
_COGL_GET_GLES2_WRAPPER (w, NO_RETVAL);
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
if (w->settings.user_program == gl_program)
{
w->settings.user_program = 0;
w->settings_dirty = TRUE;
}
/* Remove any cached programs that link against this custom program */
for (node = w->compiled_programs; node; node = next)
{
next = node->next;
program = (CoglGles2WrapperProgram *) node->data;
Merge cogl-program-{gl,gles}.c into one cogl-program.c This merges the two implementations of CoglProgram for the GLES2 and GL backends into one. The implementation is more like the GLES2 version which would track the uniform values and delay sending them to GL. CoglProgram is now effectively just a GList of CoglShaders along with an array of stored uniform values. CoglProgram never actually creates a GL program, instead this is left up to the GLSL material backend. This is necessary on GLES2 where we may need to relink the user's program with different generated shaders depending on the other emulated fixed function state. It will also be necessary in the future GLSL backends for regular OpenGL. The GLSL and ARBfp material backends are now the ones that create and link the GL program from the list of shaders. The linked program is attached to the private material state so that it can be reused if the CoglProgram is used again with the same material. This does mean the program will get relinked if the shader is used with multiple materials. This will be particularly bad if the legacy cogl_program_use function is used because that effectively always makes one-shot materials. This problem will hopefully be alleviated if we make a hash table with a cache of generated programs. The cogl program would then need to become part of the hash lookup. Each CoglProgram now has an age counter which is incremented every time a shader is added. This is used by the material backends to detect when we need to create a new GL program for the user program. The internal _cogl_use_program function now takes a GL program handle rather than a CoglProgram. It no longer needs any special differences for GLES2. The GLES2 wrapper function now also uses this function to bind its generated shaders. The ARBfp shaders no longer store a copy of the program source but instead just directly create a program object when cogl_shader_source is called. This avoids having to reupload the source if the same shader is used in multiple materials. There are currently a few gross hacks to get the GLES2 backend to work with this. The problem is that the GLSL material backend is now generating a complete GL program but the GLES2 wrapper still needs to add its fixed function emulation shaders if the program doesn't provide either a vertex or fragment shader. There is a new function in the GLES2 wrapper called _cogl_gles2_use_program which replaces the previous cogl_program_use implementation. It extracts the GL shaders from the GL program object and creates a new GL program containing all of the shaders plus its fixed function emulation. This new program is returned to the GLSL material backend so that it can still flush the custom uniforms using it. The user_program is attached to the GLES2 settings struct as before but its stored using a GL program handle rather than a CoglProgram pointer. This hack will go away once the GLSL material backend replaces the GLES2 wrapper by generating the code itself. Under Mesa this currently generates some GL errors when glClear is called in test-cogl-shader-glsl. I think this is due to a bug in Mesa however. When the user program on the material is changed the GLSL backend gets notified and deletes the GL program that it linked from the user shaders. The program will still be bound in GL however. Leaving a deleted shader bound exposes a bug in Mesa's glClear implementation. More details are here: https://bugs.freedesktop.org/show_bug.cgi?id=31194
2010-10-15 17:00:29 +00:00
if (program->settings.user_program == gl_program)
{
if (last)
last->next = next;
else
w->compiled_programs = next;
g_slist_free1 (node);
}
else
last = node;
}
}