mutter/cogl/driver/gl/gles/cogl-texture-driver-gles.c

646 lines
21 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*
* Authors:
* Matthew Allum <mallum@openedhand.com>
* Neil Roberts <neil@linux.intel.com>
* Robert Bragg <robert@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl-private.h"
#include "cogl-util.h"
#include "cogl-bitmap.h"
#include "cogl-bitmap-private.h"
#include "cogl-texture-private.h"
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 18:54:57 +01:00
#include "cogl-pipeline.h"
#include "cogl-pipeline-opengl-private.h"
#include "cogl-context-private.h"
#include "cogl-object-private.h"
#include "cogl-primitives.h"
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
#include "cogl-util-gl-private.h"
#include "cogl-error-private.h"
#include "cogl-texture-gl-private.h"
#include <string.h>
#include <stdlib.h>
#include <math.h>
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
#ifndef GL_TEXTURE_3D
#define GL_TEXTURE_3D 0x806F
#endif
#ifndef GL_MAX_3D_TEXTURE_SIZE_OES
#define GL_MAX_3D_TEXTURE_SIZE_OES 0x8073
#endif
/* This extension isn't available for GLES 1.1 so these won't be
defined */
#ifndef GL_UNPACK_ROW_LENGTH
#define GL_UNPACK_ROW_LENGTH 0x0CF2
#endif
#ifndef GL_UNPACK_SKIP_ROWS
#define GL_UNPACK_SKIP_ROWS 0x0CF3
#endif
#ifndef GL_UNPACK_SKIP_PIXELS
#define GL_UNPACK_SKIP_PIXELS 0x0CF4
#endif
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 17:28:52 +00:00
static GLuint
_cogl_texture_driver_gen (CoglContext *ctx,
GLenum gl_target,
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 17:28:52 +00:00
CoglPixelFormat internal_format)
{
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 17:28:52 +00:00
GLuint tex;
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 17:28:52 +00:00
GE (ctx, glGenTextures (1, &tex));
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 17:28:52 +00:00
_cogl_bind_gl_texture_transient (gl_target, tex, FALSE);
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 17:28:52 +00:00
switch (gl_target)
{
case GL_TEXTURE_2D:
case GL_TEXTURE_3D:
/* GL_TEXTURE_MAG_FILTER defaults to GL_LINEAR, no need to set it */
GE( ctx, glTexParameteri (gl_target,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR) );
break;
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 17:28:52 +00:00
default:
g_assert_not_reached();
}
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 17:28:52 +00:00
return tex;
}
static void
prep_gl_for_pixels_upload_full (CoglContext *ctx,
int pixels_rowstride,
int pixels_src_x,
int pixels_src_y,
int pixels_bpp)
{
if (_cogl_has_private_feature (ctx, COGL_PRIVATE_FEATURE_UNPACK_SUBIMAGE))
{
GE( ctx, glPixelStorei (GL_UNPACK_ROW_LENGTH,
pixels_rowstride / pixels_bpp) );
GE( ctx, glPixelStorei (GL_UNPACK_SKIP_PIXELS, pixels_src_x) );
GE( ctx, glPixelStorei (GL_UNPACK_SKIP_ROWS, pixels_src_y) );
}
else
{
g_assert (pixels_src_x == 0);
g_assert (pixels_src_y == 0);
}
_cogl_texture_gl_prep_alignment_for_pixels_upload (ctx, pixels_rowstride);
}
static void
_cogl_texture_driver_prep_gl_for_pixels_upload (CoglContext *ctx,
int pixels_rowstride,
int pixels_bpp)
{
prep_gl_for_pixels_upload_full (ctx,
pixels_rowstride,
0, 0, /* src_x/y */
pixels_bpp);
}
static void
_cogl_texture_driver_prep_gl_for_pixels_download (CoglContext *ctx,
int pixels_rowstride,
int image_width,
int pixels_bpp)
{
_cogl_texture_gl_prep_alignment_for_pixels_download (ctx,
pixels_bpp,
image_width,
pixels_rowstride);
}
static CoglBitmap *
prepare_bitmap_alignment_for_upload (CoglContext *ctx,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
CoglBitmap *src_bmp,
CoglError **error)
{
CoglPixelFormat format = cogl_bitmap_get_format (src_bmp);
int bpp = _cogl_pixel_format_get_bytes_per_pixel (format);
int src_rowstride = cogl_bitmap_get_rowstride (src_bmp);
int width = cogl_bitmap_get_width (src_bmp);
int alignment = 1;
if (_cogl_has_private_feature (ctx, COGL_PRIVATE_FEATURE_UNPACK_SUBIMAGE) ||
src_rowstride == 0)
return cogl_object_ref (src_bmp);
/* Work out the alignment of the source rowstride */
alignment = 1 << (_cogl_util_ffs (src_rowstride) - 1);
alignment = MIN (alignment, 8);
/* If the aligned data equals the rowstride then we can upload from
the bitmap directly using GL_UNPACK_ALIGNMENT */
if (((width * bpp + alignment - 1) & ~(alignment - 1)) == src_rowstride)
return cogl_object_ref (src_bmp);
/* Otherwise we need to copy the bitmap to pack the alignment
because GLES has no GL_ROW_LENGTH */
else
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
return _cogl_bitmap_copy (src_bmp, error);
}
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
static CoglBool
_cogl_texture_driver_upload_subregion_to_gl (CoglContext *ctx,
CoglTexture *texture,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
CoglBool is_foreign,
int src_x,
int src_y,
int dst_x,
int dst_y,
int width,
int height,
int level,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
CoglBitmap *source_bmp,
GLuint source_gl_format,
GLuint source_gl_type,
CoglError **error)
{
GLenum gl_target;
GLuint gl_handle;
uint8_t *data;
CoglPixelFormat source_format = cogl_bitmap_get_format (source_bmp);
int bpp = _cogl_pixel_format_get_bytes_per_pixel (source_format);
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
CoglBitmap *slice_bmp;
int rowstride;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
GLenum gl_error;
CoglBool status = TRUE;
CoglError *internal_error = NULL;
int level_width;
int level_height;
cogl_texture_get_gl_texture (texture, &gl_handle, &gl_target);
/* If we have the GL_EXT_unpack_subimage extension then we can
upload from subregions directly. Otherwise we may need to copy
the bitmap */
if (!_cogl_has_private_feature (ctx, COGL_PRIVATE_FEATURE_UNPACK_SUBIMAGE) &&
(src_x != 0 || src_y != 0 ||
width != cogl_bitmap_get_width (source_bmp) ||
height != cogl_bitmap_get_height (source_bmp)))
{
slice_bmp =
_cogl_bitmap_new_with_malloc_buffer (ctx,
width, height,
source_format,
error);
if (!slice_bmp)
return FALSE;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
if (!_cogl_bitmap_copy_subregion (source_bmp,
slice_bmp,
src_x, src_y,
0, 0, /* dst_x/y */
width, height,
error))
{
cogl_object_unref (slice_bmp);
return FALSE;
}
src_x = src_y = 0;
}
else
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
{
slice_bmp = prepare_bitmap_alignment_for_upload (ctx, source_bmp, error);
if (!slice_bmp)
return FALSE;
}
rowstride = cogl_bitmap_get_rowstride (slice_bmp);
/* Setup gl alignment to match rowstride and top-left corner */
prep_gl_for_pixels_upload_full (ctx, rowstride, src_x, src_y, bpp);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
data = _cogl_bitmap_gl_bind (slice_bmp, COGL_BUFFER_ACCESS_READ, 0, &internal_error);
/* NB: _cogl_bitmap_gl_bind() may return NULL when successfull so we
* have to explicitly check the cogl error pointer to catch
* problems... */
if (internal_error)
{
_cogl_propagate_error (error, internal_error);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
cogl_object_unref (slice_bmp);
return FALSE;
}
_cogl_bind_gl_texture_transient (gl_target, gl_handle, is_foreign);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
/* Clear any GL errors */
while ((gl_error = ctx->glGetError ()) != GL_NO_ERROR)
;
_cogl_texture_get_level_size (texture,
level,
&level_width,
&level_height,
NULL);
if (level_width == width && level_height == height)
{
/* GL gets upset if you use glTexSubImage2D to define the
* contents of a mipmap level so we make sure to use
* glTexImage2D if we are uploading a full mipmap level.
*/
ctx->glTexImage2D (gl_target,
level,
_cogl_texture_gl_get_format (texture),
width,
height,
0,
source_gl_format,
source_gl_type,
data);
}
else
{
/* GL gets upset if you use glTexSubImage2D to initialize the
* contents of a mipmap level so if this is the first time
* we've seen a request to upload to this level we call
* glTexImage2D first to assert that the storage for this
* level exists.
*/
if (texture->max_level < level)
{
ctx->glTexImage2D (gl_target,
level,
_cogl_texture_gl_get_format (texture),
level_width,
level_height,
0,
source_gl_format,
source_gl_type,
NULL);
}
ctx->glTexSubImage2D (gl_target,
level,
dst_x, dst_y,
width, height,
source_gl_format,
source_gl_type,
data);
}
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
if (_cogl_gl_util_catch_out_of_memory (ctx, error))
status = FALSE;
_cogl_bitmap_gl_unbind (slice_bmp);
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
cogl_object_unref (slice_bmp);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
return status;
}
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
static CoglBool
_cogl_texture_driver_upload_to_gl (CoglContext *ctx,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
GLenum gl_target,
GLuint gl_handle,
CoglBool is_foreign,
CoglBitmap *source_bmp,
GLint internal_gl_format,
GLuint source_gl_format,
GLuint source_gl_type,
CoglError **error)
{
CoglPixelFormat source_format = cogl_bitmap_get_format (source_bmp);
int bpp = _cogl_pixel_format_get_bytes_per_pixel (source_format);
int rowstride;
int bmp_width = cogl_bitmap_get_width (source_bmp);
int bmp_height = cogl_bitmap_get_height (source_bmp);
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
CoglBitmap *bmp;
uint8_t *data;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
GLenum gl_error;
CoglError *internal_error = NULL;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
CoglBool status = TRUE;
bmp = prepare_bitmap_alignment_for_upload (ctx, source_bmp, error);
if (!bmp)
return FALSE;
rowstride = cogl_bitmap_get_rowstride (bmp);
/* Setup gl alignment to match rowstride and top-left corner */
_cogl_texture_driver_prep_gl_for_pixels_upload (ctx, rowstride, bpp);
_cogl_bind_gl_texture_transient (gl_target, gl_handle, is_foreign);
data = _cogl_bitmap_gl_bind (bmp,
COGL_BUFFER_ACCESS_READ,
0, /* hints */
&internal_error);
/* NB: _cogl_bitmap_gl_bind() may return NULL when successful so we
* have to explicitly check the cogl error pointer to catch
* problems... */
if (internal_error)
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
{
cogl_object_unref (bmp);
_cogl_propagate_error (error, internal_error);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
return FALSE;
}
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
/* Clear any GL errors */
while ((gl_error = ctx->glGetError ()) != GL_NO_ERROR)
;
ctx->glTexImage2D (gl_target, 0,
internal_gl_format,
bmp_width, bmp_height,
0,
source_gl_format,
source_gl_type,
data);
if (_cogl_gl_util_catch_out_of_memory (ctx, error))
status = FALSE;
_cogl_bitmap_gl_unbind (bmp);
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
cogl_object_unref (bmp);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
return status;
}
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
static CoglBool
_cogl_texture_driver_upload_to_gl_3d (CoglContext *ctx,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
GLenum gl_target,
GLuint gl_handle,
CoglBool is_foreign,
GLint height,
GLint depth,
CoglBitmap *source_bmp,
GLint internal_gl_format,
GLuint source_gl_format,
GLuint source_gl_type,
CoglError **error)
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
{
CoglPixelFormat source_format = cogl_bitmap_get_format (source_bmp);
int bpp = _cogl_pixel_format_get_bytes_per_pixel (source_format);
int rowstride = cogl_bitmap_get_rowstride (source_bmp);
int bmp_width = cogl_bitmap_get_width (source_bmp);
int bmp_height = cogl_bitmap_get_height (source_bmp);
uint8_t *data;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
GLenum gl_error;
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
_cogl_bind_gl_texture_transient (gl_target, gl_handle, is_foreign);
/* If the rowstride or image height can't be specified with just
GL_ALIGNMENT alone then we need to copy the bitmap because there
is no GL_ROW_LENGTH */
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
if (rowstride / bpp != bmp_width ||
height != bmp_height / depth)
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
{
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
CoglBitmap *bmp;
int image_height = bmp_height / depth;
CoglPixelFormat source_bmp_format = cogl_bitmap_get_format (source_bmp);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
int i;
_cogl_texture_driver_prep_gl_for_pixels_upload (ctx, bmp_width * bpp, bpp);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
/* Initialize the texture with empty data and then upload each
image with a sub-region update */
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
/* Clear any GL errors */
while ((gl_error = ctx->glGetError ()) != GL_NO_ERROR)
;
ctx->glTexImage3D (gl_target,
0, /* level */
internal_gl_format,
bmp_width,
height,
depth,
0,
source_gl_format,
source_gl_type,
NULL);
if (_cogl_gl_util_catch_out_of_memory (ctx, error))
return FALSE;
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
bmp = _cogl_bitmap_new_with_malloc_buffer (ctx,
bmp_width,
height,
source_bmp_format,
error);
if (!bmp)
return FALSE;
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
for (i = 0; i < depth; i++)
{
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
if (!_cogl_bitmap_copy_subregion (source_bmp,
bmp,
0, image_height * i,
0, 0,
bmp_width,
height,
error))
{
cogl_object_unref (bmp);
return FALSE;
}
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
data = _cogl_bitmap_gl_bind (bmp,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
COGL_BUFFER_ACCESS_READ, 0, error);
if (!data)
{
cogl_object_unref (bmp);
return FALSE;
}
/* Clear any GL errors */
while ((gl_error = ctx->glGetError ()) != GL_NO_ERROR)
;
ctx->glTexSubImage3D (gl_target,
0, /* level */
0, /* xoffset */
0, /* yoffset */
i, /* zoffset */
bmp_width, /* width */
height, /* height */
1, /* depth */
source_gl_format,
source_gl_type,
data);
if (_cogl_gl_util_catch_out_of_memory (ctx, error))
{
cogl_object_unref (bmp);
_cogl_bitmap_gl_unbind (bmp);
return FALSE;
}
_cogl_bitmap_gl_unbind (bmp);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
}
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
cogl_object_unref (bmp);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
}
else
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
{
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
data = _cogl_bitmap_gl_bind (source_bmp, COGL_BUFFER_ACCESS_READ, 0, error);
if (!data)
return FALSE;
_cogl_texture_driver_prep_gl_for_pixels_upload (ctx, rowstride, bpp);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
/* Clear any GL errors */
while ((gl_error = ctx->glGetError ()) != GL_NO_ERROR)
;
ctx->glTexImage3D (gl_target,
0, /* level */
internal_gl_format,
bmp_width,
height,
depth,
0,
source_gl_format,
source_gl_type,
data);
if (_cogl_gl_util_catch_out_of_memory (ctx, error))
{
_cogl_bitmap_gl_unbind (source_bmp);
return FALSE;
}
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 18:44:16 +01:00
_cogl_bitmap_gl_unbind (source_bmp);
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
}
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
return TRUE;
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
}
/* NB: GLES doesn't support glGetTexImage2D, so cogl-texture will instead
* fallback to a generic render + readpixels approach to downloading
* texture data. (See _cogl_texture_draw_and_read() ) */
static CoglBool
_cogl_texture_driver_gl_get_tex_image (CoglContext *ctx,
GLenum gl_target,
GLenum dest_gl_format,
GLenum dest_gl_type,
uint8_t *dest)
{
return FALSE;
}
static CoglBool
_cogl_texture_driver_size_supported_3d (CoglContext *ctx,
GLenum gl_target,
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
GLenum gl_format,
GLenum gl_type,
int width,
int height,
int depth)
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
{
GLint max_size;
/* GLES doesn't support a proxy texture target so let's at least
check whether the size is greater than
GL_MAX_3D_TEXTURE_SIZE_OES */
GE( ctx, glGetIntegerv (GL_MAX_3D_TEXTURE_SIZE_OES, &max_size) );
Add a Cogl texture 3D backend This adds a publicly exposed experimental API for a 3D texture backend. There is a feature flag which can be checked for whether 3D textures are supported. Although we require OpenGL 1.2 which has 3D textures in core, GLES only provides them through an extension so the feature can be used to detect that. The textures can be created with one of two new API functions :- cogl_texture_3d_new_with_size and cogl_texture_3d_new_from_data There is also internally a new_from_bitmap function. new_from_data is implemented in terms of this function. The two constructors are effectively the only way to upload data to a 3D texture. It does not work to call glTexImage2D with the GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does nothing. It would be possible to make cogl_texture_get_data do something sensible like returning all of the images as a single long image but this is not currently implemented and instead the virtual just always fails. We may want to add API specific to the 3D texture backend to get and set a sub region of the texture. All of those three functions can throw a GError. This will happen if the GPU does not support 3D textures or it does not support NPOTs and an NPOT size is requested. It will also fail if the FBO extension is not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not given. This could be avoided by copying the code for the GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of keeping the code simple this is not yet done. This adds a couple of functions to cogl-texture-driver for uploading 3D data and querying the 3D proxy texture. prep_gl_for_pixels_upload_full now also takes sets the GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding between the images. Whenever 3D texture is uploading, both the height of the images and the height of all of the data is specified (either explicitly or implicilty from the CoglBitmap) so that the image height can be deduced by dividing by the depth.
2010-07-01 22:04:59 +01:00
return width <= max_size && height <= max_size && depth <= max_size;
}
static CoglBool
_cogl_texture_driver_size_supported (CoglContext *ctx,
GLenum gl_target,
GLenum gl_intformat,
GLenum gl_format,
GLenum gl_type,
int width,
int height)
{
GLint max_size;
/* GLES doesn't support a proxy texture target so let's at least
check whether the size is greater than GL_MAX_TEXTURE_SIZE */
GE( ctx, glGetIntegerv (GL_MAX_TEXTURE_SIZE, &max_size) );
return width <= max_size && height <= max_size;
}
static void
_cogl_texture_driver_try_setting_gl_border_color
(CoglContext *ctx,
GLuint gl_target,
const GLfloat *transparent_color)
{
/* FAIL! */
}
static CoglBool
_cogl_texture_driver_allows_foreign_gl_target (CoglContext *ctx,
GLenum gl_target)
{
/* Allow 2-dimensional textures only */
if (gl_target != GL_TEXTURE_2D)
return FALSE;
return TRUE;
}
static CoglPixelFormat
_cogl_texture_driver_find_best_gl_get_data_format
(CoglContext *context,
CoglPixelFormat format,
GLenum *closest_gl_format,
GLenum *closest_gl_type)
{
/* Find closest format that's supported by GL
(Can't use _cogl_pixel_format_to_gl since available formats
when reading pixels on GLES are severely limited) */
*closest_gl_format = GL_RGBA;
*closest_gl_type = GL_UNSIGNED_BYTE;
return COGL_PIXEL_FORMAT_RGBA_8888;
}
const CoglTextureDriver
_cogl_texture_driver_gles =
{
_cogl_texture_driver_gen,
_cogl_texture_driver_prep_gl_for_pixels_upload,
_cogl_texture_driver_upload_subregion_to_gl,
_cogl_texture_driver_upload_to_gl,
_cogl_texture_driver_upload_to_gl_3d,
_cogl_texture_driver_prep_gl_for_pixels_download,
_cogl_texture_driver_gl_get_tex_image,
_cogl_texture_driver_size_supported,
_cogl_texture_driver_size_supported_3d,
_cogl_texture_driver_try_setting_gl_border_color,
_cogl_texture_driver_allows_foreign_gl_target,
_cogl_texture_driver_find_best_gl_get_data_format
};