mutter/cogl/cogl-buffer.c

405 lines
11 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*
* Authors:
* Damien Lespiau <damien.lespiau@intel.com>
* Robert Bragg <robert@linux.intel.com>
*/
/* For an overview of the functionality implemented here, please see
* cogl-buffer.h, which contains the gtk-doc section overview for the
* Pixel Buffers API.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <string.h>
#include <glib.h>
#include "cogl-util.h"
#include "cogl-context-private.h"
#include "cogl-object-private.h"
#include "cogl-pixel-buffer-private.h"
/* XXX:
* The CoglObject macros don't support any form of inheritance, so for
* now we implement the CoglObject support for the CoglBuffer
* abstract class manually.
*/
static GSList *_cogl_buffer_types;
void
_cogl_buffer_register_buffer_type (const CoglObjectClass *klass)
{
_cogl_buffer_types = g_slist_prepend (_cogl_buffer_types, (void *) klass);
}
CoglBool
cogl_is_buffer (void *object)
{
const CoglObject *obj = object;
GSList *l;
if (object == NULL)
return FALSE;
for (l = _cogl_buffer_types; l; l = l->next)
if (l->data == obj->klass)
return TRUE;
return FALSE;
}
/*
* Fallback path, buffer->data points to a malloc'ed buffer.
*/
static void *
malloc_map_range (CoglBuffer *buffer,
size_t offset,
size_t size,
CoglBufferAccess access,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
CoglBufferMapHint hints,
CoglError **error)
{
buffer->flags |= COGL_BUFFER_FLAG_MAPPED;
return buffer->data + offset;
}
static void
malloc_unmap (CoglBuffer *buffer)
{
buffer->flags &= ~COGL_BUFFER_FLAG_MAPPED;
}
static CoglBool
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
malloc_set_data (CoglBuffer *buffer,
unsigned int offset,
const void *data,
unsigned int size,
CoglError **error)
{
memcpy (buffer->data + offset, data, size);
return TRUE;
}
void
_cogl_buffer_initialize (CoglBuffer *buffer,
CoglContext *ctx,
size_t size,
CoglBufferBindTarget default_target,
CoglBufferUsageHint usage_hint,
CoglBufferUpdateHint update_hint)
{
CoglBool use_malloc = FALSE;
buffer->context = ctx;
buffer->flags = COGL_BUFFER_FLAG_NONE;
buffer->store_created = FALSE;
buffer->size = size;
buffer->last_target = default_target;
buffer->usage_hint = usage_hint;
buffer->update_hint = update_hint;
buffer->data = NULL;
buffer->immutable_ref = 0;
if (default_target == COGL_BUFFER_BIND_TARGET_PIXEL_PACK ||
default_target == COGL_BUFFER_BIND_TARGET_PIXEL_UNPACK)
{
if (!_cogl_has_private_feature (ctx, COGL_PRIVATE_FEATURE_PBOS))
use_malloc = TRUE;
}
else if (default_target == COGL_BUFFER_BIND_TARGET_ATTRIBUTE_BUFFER ||
default_target == COGL_BUFFER_BIND_TARGET_INDEX_BUFFER)
{
if (!_cogl_has_private_feature (ctx, COGL_PRIVATE_FEATURE_VBOS))
use_malloc = TRUE;
}
if (use_malloc)
{
buffer->vtable.map_range = malloc_map_range;
buffer->vtable.unmap = malloc_unmap;
buffer->vtable.set_data = malloc_set_data;
buffer->data = g_malloc (size);
}
else
{
buffer->vtable.map_range = ctx->driver_vtable->buffer_map_range;
buffer->vtable.unmap = ctx->driver_vtable->buffer_unmap;
buffer->vtable.set_data = ctx->driver_vtable->buffer_set_data;
ctx->driver_vtable->buffer_create (buffer);
buffer->flags |= COGL_BUFFER_FLAG_BUFFER_OBJECT;
}
}
void
_cogl_buffer_fini (CoglBuffer *buffer)
{
_COGL_RETURN_IF_FAIL (!(buffer->flags & COGL_BUFFER_FLAG_MAPPED));
_COGL_RETURN_IF_FAIL (buffer->immutable_ref == 0);
if (buffer->flags & COGL_BUFFER_FLAG_BUFFER_OBJECT)
buffer->context->driver_vtable->buffer_destroy (buffer);
else
g_free (buffer->data);
}
cogl: improves header and coding style consistency We've had complaints that our Cogl code/headers are a bit "special" so this is a first pass at tidying things up by giving them some consistency. These changes are all consistent with how new code in Cogl is being written, but the style isn't consistently applied across all code yet. There are two parts to this patch; but since each one required a large amount of effort to maintain tidy indenting it made sense to combine the changes to reduce the time spent re indenting the same lines. The first change is to use a consistent style for declaring function prototypes in headers. Cogl headers now consistently use this style for prototypes: return_type cogl_function_name (CoglType arg0, CoglType arg1); Not everyone likes this style, but it seems that most of the currently active Cogl developers agree on it. The second change is to constrain the use of redundant glib data types in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all been replaced with int, unsigned int, float, long, unsigned long and char respectively. When talking about pixel data; use of guchar has been replaced with guint8, otherwise unsigned char can be used. The glib types that we continue to use for portability are gboolean, gint{8,16,32,64}, guint{8,16,32,64} and gsize. The general intention is that Cogl should look palatable to the widest range of C programmers including those outside the Gnome community so - especially for the public API - we want to minimize the number of foreign looking typedefs.
2010-02-10 01:57:32 +00:00
unsigned int
cogl_buffer_get_size (CoglBuffer *buffer)
{
if (!cogl_is_buffer (buffer))
return 0;
return COGL_BUFFER (buffer)->size;
}
void
cogl_buffer_set_update_hint (CoglBuffer *buffer,
CoglBufferUpdateHint hint)
{
if (!cogl_is_buffer (buffer))
return;
if (G_UNLIKELY (hint > COGL_BUFFER_UPDATE_HINT_STREAM))
hint = COGL_BUFFER_UPDATE_HINT_STATIC;
buffer->update_hint = hint;
}
CoglBufferUpdateHint
cogl_buffer_get_update_hint (CoglBuffer *buffer)
{
if (!cogl_is_buffer (buffer))
return FALSE;
return buffer->update_hint;
}
static void
warn_about_midscene_changes (void)
{
static CoglBool seen = FALSE;
if (!seen)
{
g_warning ("Mid-scene modification of buffers has "
"undefined results\n");
seen = TRUE;
}
}
void *
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
_cogl_buffer_map (CoglBuffer *buffer,
CoglBufferAccess access,
CoglBufferMapHint hints,
CoglError **error)
{
_COGL_RETURN_VAL_IF_FAIL (cogl_is_buffer (buffer), NULL);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
return cogl_buffer_map_range (buffer, 0, buffer->size, access, hints, error);
}
void *
cogl_buffer_map (CoglBuffer *buffer,
CoglBufferAccess access,
CoglBufferMapHint hints)
{
CoglError *ignore_error = NULL;
void *ptr =
cogl_buffer_map_range (buffer, 0, buffer->size, access, hints,
&ignore_error);
if (!ptr)
cogl_error_free (ignore_error);
return ptr;
}
void *
cogl_buffer_map_range (CoglBuffer *buffer,
size_t offset,
size_t size,
CoglBufferAccess access,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
CoglBufferMapHint hints,
CoglError **error)
{
_COGL_RETURN_VAL_IF_FAIL (cogl_is_buffer (buffer), NULL);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
_COGL_RETURN_VAL_IF_FAIL (!(buffer->flags & COGL_BUFFER_FLAG_MAPPED), NULL);
if (G_UNLIKELY (buffer->immutable_ref))
warn_about_midscene_changes ();
buffer->data = buffer->vtable.map_range (buffer,
offset,
size,
access,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
hints,
error);
return buffer->data;
}
void
cogl_buffer_unmap (CoglBuffer *buffer)
{
if (!cogl_is_buffer (buffer))
return;
if (!(buffer->flags & COGL_BUFFER_FLAG_MAPPED))
return;
buffer->vtable.unmap (buffer);
}
void *
_cogl_buffer_map_for_fill_or_fallback (CoglBuffer *buffer)
{
return _cogl_buffer_map_range_for_fill_or_fallback (buffer, 0, buffer->size);
}
void *
_cogl_buffer_map_range_for_fill_or_fallback (CoglBuffer *buffer,
size_t offset,
size_t size)
{
CoglContext *ctx = buffer->context;
void *ret;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
CoglError *ignore_error = NULL;
_COGL_RETURN_VAL_IF_FAIL (!ctx->buffer_map_fallback_in_use, NULL);
ctx->buffer_map_fallback_in_use = TRUE;
ret = cogl_buffer_map_range (buffer,
offset,
size,
COGL_BUFFER_ACCESS_WRITE,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
COGL_BUFFER_MAP_HINT_DISCARD,
&ignore_error);
if (ret)
return ret;
cogl_error_free (ignore_error);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
/* If the map fails then we'll use a temporary buffer to fill
the data and then upload it using cogl_buffer_set_data when
the buffer is unmapped. The temporary buffer is shared to
avoid reallocating it every time */
g_byte_array_set_size (ctx->buffer_map_fallback_array, size);
ctx->buffer_map_fallback_offset = offset;
buffer->flags |= COGL_BUFFER_FLAG_MAPPED_FALLBACK;
return ctx->buffer_map_fallback_array->data;
}
void
_cogl_buffer_unmap_for_fill_or_fallback (CoglBuffer *buffer)
{
CoglContext *ctx = buffer->context;
_COGL_RETURN_IF_FAIL (ctx->buffer_map_fallback_in_use);
ctx->buffer_map_fallback_in_use = FALSE;
if ((buffer->flags & COGL_BUFFER_FLAG_MAPPED_FALLBACK))
{
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
/* Note: don't try to catch OOM errors here since the use cases
* we currently have for this api (the journal and path stroke
* tesselator) don't have anything particularly sensible they
* can do in response to a failure anyway so it seems better to
* simply abort instead.
*
* If we find this is a problem for real world applications
* then in the path tesselation case we could potentially add an
* explicit cogl_path_tesselate_stroke() api that can throw an
* error for the app to cache. For the journal we could
* potentially flush the journal in smaller batches so we use
* smaller buffers, though that would probably not help for
* deferred renderers.
*/
_cogl_buffer_set_data (buffer,
ctx->buffer_map_fallback_offset,
ctx->buffer_map_fallback_array->data,
ctx->buffer_map_fallback_array->len,
NULL);
buffer->flags &= ~COGL_BUFFER_FLAG_MAPPED_FALLBACK;
}
else
cogl_buffer_unmap (buffer);
}
CoglBool
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
_cogl_buffer_set_data (CoglBuffer *buffer,
size_t offset,
const void *data,
size_t size,
CoglError **error)
{
_COGL_RETURN_VAL_IF_FAIL (cogl_is_buffer (buffer), FALSE);
_COGL_RETURN_VAL_IF_FAIL ((offset + size) <= buffer->size, FALSE);
if (G_UNLIKELY (buffer->immutable_ref))
warn_about_midscene_changes ();
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
return buffer->vtable.set_data (buffer, offset, data, size, error);
}
CoglBool
cogl_buffer_set_data (CoglBuffer *buffer,
size_t offset,
const void *data,
size_t size)
{
CoglError *ignore_error = NULL;
CoglBool status =
_cogl_buffer_set_data (buffer, offset, data, size, &ignore_error);
if (!status)
cogl_error_free (ignore_error);
return status;
}
CoglBuffer *
_cogl_buffer_immutable_ref (CoglBuffer *buffer)
{
_COGL_RETURN_VAL_IF_FAIL (cogl_is_buffer (buffer), NULL);
buffer->immutable_ref++;
return buffer;
}
void
_cogl_buffer_immutable_unref (CoglBuffer *buffer)
{
_COGL_RETURN_IF_FAIL (cogl_is_buffer (buffer));
_COGL_RETURN_IF_FAIL (buffer->immutable_ref > 0);
buffer->immutable_ref--;
}